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ABSTRACT

CGPACK is a cellular automata library for microstructure evolution, deformation
and fracture. The library is designed for use on HPC systems. It is implemented in For-
tran 2015 with extensive use of coarrays for parallelisation.
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1. CGPACK library layout

The library is made up of a set of modules. All modules are named following this scheme:
cgca_mL<module name>.f90 orcgca_mL<module name>.F90, where file extensionf90 means that the
file does not need pre-processing, and file extensionF90 means the file requires pre-processing.L is an
integer number, giving thelevelof each module. <module name> is a string of characters[a-z] .

The lowest level is 1. Modules of level L+1 depend only on modules of level L and lower. So mod-
ule of level 3 depends only on modules of levels 2 and 1. Modules of level 1 do not depend on any other
modules. Theonly exception is the top level module that is namedcgca.F90 . At the time of writing
these are the CGPACK modules:

cgca.F90
cgca_m1co.f90
cgca_m2alloc.f90
cgca_m2gb.f90
cgca_m2geom.f90
cgca_m2glm.f90
cgca_m2hx.f90
cgca_m2lnklst.f90
cgca_m2mpiio.f90
cgca_m2out.F90
cgca_m2pck.F90
cgca_m2phys.f90
cgca_m2red.f90
cgca_m2rnd.f90
cgca_m2rot.f90
cgca_m2stat.f90
cgca_m3clvg.F90
cgca_m3gbf.f90
cgca_m3nucl.f90
cgca_m3pfem.f90
cgca_m3sld.F90
cgca_m4fr.f90

2. Code av ailability

The code is available from

http://cgpack.sourceforge.net

Full sources are also available as ROBOdoc auto-generated documents:

html: http://cgpack.sourceforge.net/robodoc/toc_index.html
pdf: http://cgpack.sourceforge.net/robodoc/cgpack.pdf

text: http://cgpack.sourceforge.net/robodoc/cgpack.txt

Most CGPACK code is distributed under BSD licence. Selected parts of CGPACK are distributed under the
Apache license.

3. Building CGPACK

To build CGPACK do (adjust for your environment):

mkdir $HOME/cgpack
mkdir $HOME/lib
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On some platforms, e.g. when using the Intel Fortran compiler, separate module files, extension
.mod , will be created. On such platforms add a directory to store the module files, e.g.:

mkdir $HOME/mod

Then put the source code somewhere, e.g.:

cd $HOME/cgpack
svn co https://svn.code.sf.net/p/cgpack/code/ .

And build using one of the providedMakefile s, adjusting for your environment, e.g.:

cd head
make -f Makefile-mpiifort
make -f Makefile-mpiifort install

This will build the library under$HOME/cgpack and install it under$HOME/lib/libcgpack.a . If
separate module files were built too, these will be installed under$HOME/mod.

4. Cellular automata (CA)

There is extensive background literature on CA (Vichniac, 1984; Chopard, 1998; Phillips, 2001;
LeSar, 2013). TheCGPACK l ibrary is designed for 3D analysis. The 26 cell neighbourhood (Moore’s
neighbourhood) is assumed (Shterenlikht, 2015).

The library provides parallelisation via coarrays, which are a new language element introduced in
Fortran 2008 standard (Shterenlikht, 2015). The central feature of the library is thespacecoarray. This is
an allocatable integer array coarray, defined as follows.

integer( kind=iarr ), allocatable, intent(inout) :: coarray(:,:,:,:)[:,:,:]

whereiarr is an integer kind used for the space coarray. All kinds and other parameters are defined in
modulecgca_m1co.f90 . Space coarray is allocated by routinecgca_as from module
cgca_m2alloc.f90 . Routinecgca_as takes many input parameters:

subroutine cgca_as( l1, u1, l2, u2, l3, u3, col1, cou1, col2, cou2, &
col3, props, coarray )

and allocates the space coarray as follows.

allocate( coarray( &
l1-halo:u1+halo, l2-halo:u2+halo, l3-halo:u3+halo, props) &
[col1:cou1, col2:cou2, col3:*] )

5. Halo exchange

5.1. Global halo exchange

This is required if self-similar (or periodic) boundary conditions are preferred. Self-similar BC are
probably more useful than fixed BC when grain statistics are important.For example, if fixed BC are used
grains touching the boundary are not growing and evolving in the same way as grains which border only
other grains. If sufficiently many grains are simulated, then self-similar BC improve grain size statistics.
Otherwise the grains touching the model boundary must be excluded from the analysis.

Global halo exchange is more complex than local.

5.1.1. 2D planes

5.1.2. 1D edges
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The same diagram is used for exchanging edges along all three axes. Thecoord. systems in the middle are
to help understand the array assignments.
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along all three axes. Thecoord. systems in the middle are to help understand the array assignments.}

6. Messages

CGPACK design assumes that routines might need to pass messages to the user. There are four lev-
els of user messages:

1. information

2. warning

3. error

4. debugging

Each message is written to stdout as a single line of text. Somemessages can be long, so they might
wrap when viewed in some editors. The decision not to break a message into multiple one-line chunks was
taken to simplify searching for messages, e.g. withgrep . Having a message written as a single line makes
searching for the complete message easier.

The first field in all messages is a label showing the level of the message, followed by a colon,: ,
exactly one of:INFO: , WARN:, ERROR:or DEBUG:. The standard labels are used to search for a particu-
lar type of messages.For example to check if there are any warnings issued by the program the user can
use this command:

grep WARN <outfile>.

or

grep "ˆWARN:" <outfile>

or to see all debugging output, the user can issue this command:

grep DEBUG: <outfile>

or

grep "ˆDEBUG" <outfile>
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The second field in all messages is the name of the routine that issued that message, followed by a
colon,: , e.g. cgca_clvgsd: , cgca_nr: , etc.

Colons are used to help separate the messages into fields, with tools such asawk.

The third field is the content of the message. This field is not standardised and will differ from one
routine to another, hopefully giving the user some helpful information.

Some messages will contain the number of the image that issued the message.

6.1. Information messages

Information messages start withINFO: . These messages are intended to give the user progress
information, where it is expected that routines might take a while to complete. Examples:

INFO: cgca_sld: iterations completed: 140
INFO: cgca_sld: iterations completed: 150
INFO: cgca_clvgp: iterations completed: 10
INFO: cgca_clvgp: iterations completed: 20

Accordingly the routines which provide the information messages allow the user to specify the fre-
quency of messaging. For example input argumentheartbeat in routine

subroutine cgca_clvgp( coarray, rt, t, scrit, sub, periodicbc, iter, &
heartbeat, debug )

gives the frequency of the information messages, in this case given in the number of CA iterations.

6.2. Warning messages

Warning messages start withWARN:. These messages are intended to warn the user of unexpected
input, undesirable settings, unexpected, but not fatal, runtime conditions, etc. Example:

WARN: cgca_gcr: image 1144: No match found for given pair: 3904 2126.
WARN: cgca_nr: too many nuclei - no physical sense! nuclei/model size: 0.683E+06

The user generally does not have the control over warning messages. These are issued based on the logic of
the CGPACK l ibrary. It is up to the user what action to take on encountering one of the warning messages.
Some warnings might safely be ignored. Other warnings, such as the second warning above, might indicate
that the results have no physical sense. The user can then decide to terminate the analysis early, change the
input values and rerun.Yet other warnings might indicate unexpected conditions demanding further inves-
tigation, e.g. the first warning above.

6.3. Error messages

Error messages start withERROR:.

CGPACK was designed to treat all errors as fatal. Infact all error conditions are implemented with
ERROR STOPFortran 2008 intrinsic which initiates error termination. The program is expected to exit as
soon as possible. Therefore it is expected that there will not be more than a single error message issued by
any CGPACK program. Thismeans that searching for error messages might not be needed.

Typical conditions resulting in the issuing of error messages, e.g. in error termination, are insufficient
memory when allocating arrays or conditions which violate the model logic, e.g. passing non-existent grain
numbers or image numbers. Examples:

ERROR: cgca_dv: cannot deallocate coarray
ERROR: cgca_gc: coarray not allocated, img: 17

6.4. Debugging messages

Debugging messages start withDEBUG:.
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Some routines provide a capability to print debugging output on request.For example, input argu-
mentdebug in routine

subroutine cgca_clvgp( coarray, rt, t, scrit, sub, periodicbc, iter, &
heartbeat, debug )

is a logical variable. Ifdebug = .true. then some debugging information will be dumpted to stdout
by that routine, and by all routines invoked by this routine, if any of them provide debugging capability.
For example, routinecgca_clvgp above calls routinecgca_clvgsd which prints debug ouput when
debug = .true. is passed to cgca_clvgp:

DEBUG: cgca_clvgsd: img: 6: newstate=-3, calling cgca_gcf, gcupd=(34 9 1),
marr=(9 9 27 9 27 27 9 27 27 9 9 27 9 34 34 34 34 34 9 34 34 34 34 34 34

34 34 ).
DEBUG: cgca_clvgsd: img: 2: newstate=-4, calling cgca_gcf, gcupd=(27 34 1),
marr=(27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 34 27 27 9 9 9 34 34 34

34 34 34 ).

Note that the long lines of debugging output have been wrapped here.

The volume of debugging output can be very large. Theuser is advised to use caution when asking
for debugging output, particularly on large core counts. In some cased debugging output can exceed sev-
eral GB.

7. Interfacing with ParaFEM

ParaFEM is a parallel scalable finite element library written in Fortran 90/95/2003 with MPI library
for communications. The main web site is:

http://parafem.org.uk .

The code is available via svn from:

http://sourceforge.net/projects/parafem

The best documentation for the code is Dr Margetts’ book (Smith, 2014), specifically chapter 12.ParaFEM
is distributed under BSD licence.

Intefrace of CGPACK with ParaFEM is implemented in modulecgca_m3pfem.f90 . The module
includes the following routines:
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cgca_pfem_boxin
cgca_pfem_cellin
cgca_pfem_cenc
cgca_pfem_cendmp
cgca_pfem_centroid_tmp
cgca_pfem_ctalloc
cgca_pfem_ctdalloc
cgca_pfem_ealloc
cgca_pfem_edalloc
cgca_pfem_enew
cgca_pfem_intcalc1
cgca_pfem_integalloc
cgca_pfem_integdalloc
cgca_pfem_integrity
cgca_pfem_partin
cgca_pfem_salloc
cgca_pfem_sdalloc
cgca_pfem_sdmp
cgca_pfem_simg
cgca_pfem_stress
cgca_pfem_uym
cgca_pfem_wholein

7.1. Mapping

Consider a body of arbitrary shape and size:

body (domain)

Consider a "box" of cells, i.e.a rectilinear array of arbitrary size

material

that occupies some or all of the space occupied by the body:
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multi-scale model

Here the dashed lines are the box edges obscured by the body, and thin dotted lines are the outlines of the
body obscured by the box.

So there are bits of the material box which are outside of the body, and there are bits of the body
which are outside of the material box. These regions are of no interest to us. However, it will be important
to identify such regions. Theregions of space which are occupied by the body and by the material box are
subject to multi-scale analysis.

We assume that the number of coarray images and MPI processes are always identical. This is cur-
rently the case on Cray and Intel systems.

The following illustration of the MPI/coarray multi-scale model is drawn for 4 MPI processes and 4
coarray images.ParaFEM is written in fortran. Hence MPI ranks start from 1.

CA 3

multi-scale model

CA 1

CA 2

MPI 4

MPI 3

MPI 2

MPI 1

CA 4

There are 4 sub-domains, processed by 4 MPI processes with ranks 1 to 4. These are denoted by thin solid
lines drawn on top of the body. There are 4 images with the coarrays of cellular microstructure. These are
also denoted by thin solid lines drawn on top of the material box.

Each process has its chunk of finite elements and its microstructure coarray. There are two problems.
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1. SomeFE have no corresponding cells and some cells have no corresponding FEs. Corresponding
here means occupying the same space.

2. FEsand cells that do correspond to each other are not always allocated to the same processor.

processor 2processor 1 processor 3 processor 4

The boxes represent the processors, or in Cray terminology, processing elements (PE). Each PE is
given an MPI rank and a coarray image number. These arenotguaranteed to be identical. On Cray sys-
tems on any PE MPI rank is identical to the image number. At present the interface relies on the fact that
MPI rank is identical to the coarray image number. If this is not the same of any system, then the interface
will not work.

The arrows in this diagram indicate data transfer between CA and FE. Coarray on PE 1 will have to
communicate with FE on PE 3. FE on PE 1 will have to communicate with coarrays on PEs 2 and 3. And
so on. Note that FE on PE 4 do not communicate with CA at all, because none of these FE occupy the
same physical space as CA. Likewise, it is possible, although not shown in this diagram, that coarrays on
some image will not need to communicate with FE at all. This will happen if none of these cells will share
space with FE.

It is a major assumption of the framework that the mapping between the FE and CA is not affected by
the deformation.For small deformation problems this assumption is natural.For large deformation prob-
lems this assumption means that the CA array isdeformingtogether with FE. This assumption means that
the mapping between CA and FE is established based on the initial, undeformed, geometry, and is not
changed throughout the analysis.

The benefits of this approach are that the CA halo exchange algorithm is unaffected by linking CA to
FE. Indeed,as far as CA is concerned, not much is changing at all.

One drawback of this simple mapping scheme is that there might be lots of communications across
the node boundary. These correspond to the arrows crossing the box boundaries in the diagram above. In
the example of the illustration there are four inter-processor CA↔ FE arrows, and only a single CA↔ FE
arrow on the same processor, PE 2. Howev er, this is a performance problem, which will have to be
addressed later.

The first problem in constructing the interface following this general scheme is that each image must
know which MPI processes to communicate with to obtain the FE data.

Let’s denote the FE coordinate system (CS) byxFE, and the CA CS byxCA. The CA model "box" is
always aligned with the CA CS. Let’s denote the origin of the CA CS in the FE CS system byxFE

o . Let R
be the rotation tensorfrom the FE CSto the CA CS. Then coordinates of some point P in the FE and the
CA CS are related as follows:

xCA = R ⋅ (xFE − xFE
o )

xFE = RT ⋅ xCA + xFE
o

These relationships are illustrated below for a coarray on a single image.
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xCA

FE

CA

HerexCA
s andxCA

e denote the extents of the coarray model space on each image.

Each image knows its ownxCA
s andxCA

e . The algorithm for constructing the mapping includes the
following steps:

1. Findout what MPI processes contain FEs withintial centroid coordinates inside the coarray "box" on
each image.

2. Findall element numbers from each MPI process that have to communicate with the coarray "box"
on each image.

The key ParaFEM/CGPACK interface data structure is the allocatable private local, i.e. non-coarray,
array of derived type lcentr established on each image. This array contains centroids of all finite ele-
ments linked to this image, including the element numbers and the images where these elements are stored.
This array is defined as:

type mcen
integer( kind=idef ) :: image
integer( kind=idef ) :: elnum
real( kind=cgca_pfem_iwp ) :: centr(3)

end type mcen
type( mcen ), allocatable :: lcentr(:)

Below is the illustration of the use oflcentr array. Consider 2 images, P and Q. The CA array on
image P might have to communicate with FE which are stored on the same image, and also with those FE
which are stored on other images.For example FE with centroid coordinatesr is FE number n, that is
stored on image Q. Getting and sending data to this FE will involve inter-image communication. FE with
centroid coordinatess is FE number b, which is stored on the same image.

Similarly on some other image Q, a FE with centroid coordinatesu is FE number m, that is stored
locally on the same image. However, FE with centroid coordinatest is FE number a, that is stored on
image P, so remote put/get operations will be required to communicate with that FE.

Note the key role played bylcentr array in linking FE with CA.
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Using lcentr array it is possible for any image to know what finite elements it needs to exchange
the data with, and to what images these belong:

CA on img 91 <-> FE 1266 on img 163 centr. in CA cs 2.55, 8.45, 4.95
CA on img 57 <-> FE 3104 on img 34 centr. in CA cs 5.00E-2, 1.75, 4.95
CA on img 36 <-> FE 435 on img 131 centr. in CA cs 3.85, 6.75, 2.45
CA on img 1 <-> FE 2292 on img 2 centr. in CA cs 2*5.00E-2, 2.45
CA on img 141 <-> FE 4000 on img 162 centr. in CA cs 5.15, 8.45, 7.45
CA on img 1 <-> FE 2293 on img 2 centr. in CA cs 0.15, 5.00E-2, 2.45
CA on img 1 <-> FE 2294 on img 2 centr. in CA cs 0.25, 5.00E-2, 2.45
CA on img 1 <-> FE 2295 on img 2 centr. in CA cs 0.35, 5.00E-2, 2.45

This data is dumped by routinecgca_pfem_cendmp of modulecgca_m3pfem . The finite element
numbers are local to their images. It is possible to calculate the global FE number, but there is no need. A
combination of the image number and the finite element number identify the FE uniquely. For example, the
first line in the above output says that finite element 1266 stored on image 163 has centroid coordinates
(2. 55, 8. 45, 4. 95)in the CA coord. system. Material with these coordinates is processed with CA on
image 91.

After lcentr has been established, the second important mapping issue can be resolved. Cells
which are outside of the FE model must not be processed. This means no fracture propagation can occur in
such cells. However, since there is finite resolution in FE model and in CA, this problem cannot be posed
precisely. Depending on the FE size and the CA cell size, a cell can be deemed to lie inside the FE model
or out. The algorithm implemented in the library uses some characteristic distance measure,Lc. The
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criterion is this - if the distance between a cell and the centroid ofanyFE in lcentr is less thanLc, then
this cell is considered to lie inside the FE model, otherwise it is considered to lie outside of the FE model.
All cells in the fracture layer, which lie outside of the FE model, are given statecgca_state_null ,
defined in modulecgca_m1co . These cells are not processed at all in any of the fracture routines.
Although these cells represent material in the material layer, this material is simply ignored in all fracture
calculations.

The algorithm is very simple. Just loop through all cells on an image. Routine
cgca_pfem_cellin checks whether a cell is in or out.

However, some optimisations are possible.For example, if some assumptions on smoothness of FE
model boundary are made, then it can be assumed that if all 8 corner cells of some sub-image CA box are
either in or out, then other cells inside the box don’t hav eto be checked. Thesecan be assumed to have the
same state as the 8 corner cells. Routinecgca_pfem_boxin does this check.

How to choose a sub-image box?A simple algorithm is to start from the whole box and do binary
division along the longest dimension of the box. If a sub-box is neither in nor out, i.e. some of the 8 corner
cells are in and some are out, then this sub-box is divided into 2 smaller boxes, and so on until the smallest
box gets to be a single cell. Routinecgca_pfem_partin implements this algorithm.

There also an even simple routine. If the whole of the CA array on an image is out, i.e. iflcentr is
empty on an image, then all cells are marked as out. Routinecgca_pfem_wholein implements this
algorithm.

The sub-box algorithmcgca_pfem_partin needs to maintain a list of boxes to check. Module
cgca_m2lnklst has several routines to establish, maintain and delete a linked list. When a sub-box is
partly in, and is split into two smaller boxes, the sub-box is removed from the list and the new smaller
boxes are added to it.

7.2.

Current work on the interface is carried underxx14 ParaFEM developer programs:

http://sourceforge.net/p/parafem/code/HEAD/tree/trunk/parafem/src/programs/dev/xx14/

There are 3 programs,xx14.f90 , xx14noio.f90 andxx14std.f90 . Programxx14.f90 and
xx14noio.f90 include Cray extensions to the f2008 standard, namelyCO_SUM. xx14noio.f90 has
no CA model IO. This program should be used for timing the optimising CGPACK without being biased
by IO timing issues.xx14std.f90 conform to f2008 strictly. Specifically it has no collectives, and is
thus suitable for use with Intel compilers, which do not yet support collectives.

The programs simulate deformation in a 3D body. A part of this body is mapped to a microstructure
array, established and processed via CGPACK. Currentlyxx14 all programs build and run on Archer, and
xx14std builds and runs on Intel systems.

7.3.

The stress coarray of derived type with allocatable array component is established on every image:

type type_stress
real( kind=cgca_pfem_iwp ), allocatable :: stress(:,:,:)

end type type_stress
type( type_stress ) :: cgca_pfem_stress[*]

Its allocatable array component is allocated by routinecgca_pfem_salloc :
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subroutine cgca_pfem_salloc( nels_pp, intp, comp )

! I NPUTS
! n els_pp - number of elements on this image
! i ntp - number of integration points per element
! c omp - number of stress tensor components

integer, intent( in ) :: nels_pp, intp, comp

as

call cgca_pfem_salloc( nels_pp, nip, nst )

wherenels_pp is the number of elements per MPI process,nip is the number of integration points per
element andnst is the number of stress tensor components, 6 in 3D case. So any image can access stress
tensors on any other image, e.g.:

img 96 FE 1 int. p. 8 stress -3.12E-01 -3.31E-01 -1.40E-01 -5.59E-03
1.38E-02 4.41E-02

This is the stress tensor for integration point 8 of element 1 on image 96. In this example elements have 8
integration points.

3. Eachload/time iteration FE passes to the CA level the new stress tensor,σσ , There will be a provision
for passing other variables to CA in future.

4. Doa certain number of iterations of crack propagation algorithm. The number of iteration is set with
the characteristic length scale. (At present the characterstic length scale is taken equal to the longitu-
dinal wav espeed, more precisely the length travelled by the longitudinal wav eper unit of time.)

5. Thedamage variable,D, is calculated for each CA "box". The Young’s modulus of all integration
points within the box is scaled as

Enew = Eoriginal × D

Originally D = 1. WhenD = 0 material has no remaining load bearing capacity.D is the ratio of the
number of the fractured cells to the cracteristic area.

8.

8.1.

8.2.

8.2.1.

Module with routines for creating and updating of a linked list. The module contains two derived
types:

and the following routines:

The list has to be established first with
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8.2.1.1.

This is a derived type with a pointer component of the same type to maintain a link to other variables
of the same type. The type is:

type cgca_lnklst_node
type( cgca_lnklst_tpayld ) :: value
type( cgca_lnklst_node ), pointer :: next

end type cgca_lnklst_node

This type allows for a standard one-direction linked list, which can be schematically illustrated as:

lnklst1.gv

value next

value next

...

value next

NULL

whereNULLmeans the pointer is not associated.

Access to the list is possible only from the head (top) node.
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8.2.1.2.

This is the type for payload, i.e. the data contained in each node of the list.

type cgca_lnklst_tpayld
integer :: lwr(3), upr(3)

end type cgca_lnklst_tpayld

The intention is that the data consists of the coordinates of the two corners of a CA box, the lower and the
upper. The lower corner is that which has the lowest coordinates along all 3 directions. The upper corner is
that which has the upper coordinates along all 3 directions.For example

lwr = (/ 1 , 2 00 , 3 / )
upr = (/ 10 , 202 , 3000 /)

would denote a box extending from 1 to 10 along direction 1, from 200 to 202 along direction 2, and from 3
to 3000 along direction 3.
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8.2.1.3.

This routine adds a new nodeon topof the current head. The list becomes longer by one node.

subroutine cgca_addhead( head, payload )
type( cgca_lnklst_node ), pointer, intent( inout ) :: head
type( cgca_lnklst_tpayld ), intent( in ) :: payload

Pointer to the head node is given as input. Memoryis allocated for one node. It’svalue is set to
payload . It’s next is pointed to the previoushead , i.e. tohead%next . The pointer to the newhead
is returned.

type( cgca_lnklst_node ), pointer :: tmp
allocate( tmp )
tmp%value = head%value
tmp%next => head%next
allocate( head )
head%value = payload
head%next => tmp

The action of this routine is illustrated schematically below. Imagine thevalue of thehead node
was xx before calling this routine. The list prior to calling this routine is shown on the left. The list after
this routine was called withvalue=aa is shown on the right.

lnklst3.gv

next

value=zz next

...

value=xx

lnklst4.gv

next

value=xx next

value=zz next

...

value=aa
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8.2.1.4.

This routine adds a new nodebelowthe given node. Thelist becomes longer by one node.

subroutine cgca_addmiddle( node, payload )
type( cgca_lnklst_node ), pointer, intent( in ) :: node
type( cgca_lnklst_tpayld ), intent( in ) :: payload

The pointer to an arbitrarynode is given as input. Notethat this does not need to be the head node. Mem-
ory is allocated for one node and itsvalue set topayload . node%next points to the new node. The
new node’s%next points to where thenode%next was pointing before calling this routine.

type( cgca_lnklst_node ), pointer :: tmp
allocate( tmp )
tmp%value = payload

tmp%next => node%next
node%next => tmp

If the routine was called withnode pointer set to pointing on the node withvalue=xx , and with
payload=aa , then the diagrams below schematically illustrate the lists before calling this routine (left)
and after (right).

lnklst5.gv

...

value=xx next

value=zz next

...

lnklst6.gv

...

value=xx next

value=aa next

value=zz next

...
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8.2.1.5.

This routine is used to initialise the list, i.e. create the first node.

subroutine cgca_inithead( head, payload )
type( cgca_lnklst_node ), pointer, intent( out ) :: head
type( cgca_lnklst_tpayld ), intent( in ) :: payload

The routine allocates memory for one node, sets itsvalue to payload and returns the pointer to
this node inhead . The node’snext is set toNULL, i.e. the pointer is not associated:

allocate( head )
head%value = payload
head%next => null()

After calling this routine the linked list will look like this:

lnklst2.gv

next

NULL

value
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8.2.1.6.

This routine dumps thevalue fields of all nodes on the list to stdout.

subroutine cgca_lstdmp( head )
type( cgca_lnklst_node ), pointer, intent( in ) :: head

The algorithm is to start with the head node and move downwards one node at a time until a node’s
%next is not associated.

type( cgca_lnklst_node ), pointer :: tmp
if ( .not. associated( head ) ) return
tmp => head
do

write (*,*) tmp%value
tmp => tmp%next
if ( .not. associated( tmp ) ) exit

end do

A typical output might look like this.

40 31 59 49 39 77
40 21 59 49 30 77
40 21 40 58 39 58
40 1 40 77 20 77
40 1 1 77 39 39

1 1 1 39 39 77
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8.2.1.7.

This routine removes the head node. The node that was below the head becomes the head node. The
list becomes shorter by one node.

subroutine cgca_rmhead( head, stat )
type( cgca_lnklst_node ), pointer, intent( inout ) :: head
integer( kind=idef ), intent( out ) :: stat

Pointer to thehead node is given as input. Pointerto head%next is returned as newhead . Mem-
ory for the oldhead node is deallocated. On outputstat is set to1 if head is NULL, i.e. if head is not
associated. Otherwisestat is set to0. If head is not associated on entry, then the routine just setsstat
to 1 and exits. If the list consists of only a single node, then on exithead will be not associated. Sostat
will be set to1.

type( cgca_lnklst_node ), pointer :: tmp
stat = 0
if ( associated( head ) ) then

tmp => head
head => head%next
deallocate( tmp )

end if
if ( .not. associated( head ) ) stat = 1

The action of this routine is illustrated schematically below.

First consider the case when the list is longer than a single node. Before calling this routine the
value of thehead node isxx (left diagram). After calling this routine the head node becomes the one
with thevalue of zz . Sincehead%next is associated,stat is set to0.

lnklst7.gv

...

nextvalue=zz

lnklst3.gv

next

value=zz next

...

value=xx

Now consider the case when the list consists of a single node. On input the list can be shown
schematically as follows.
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lnklst2.gv

next

NULL

value

On output, thehead%next will be not associated, sostat will be set to1. The linked list is no
more. Ifthe list is required again, it has to be re-initialised withcgca_inithead .
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8.2.1.8.

This routine removes a nodebelowthe given node.

subroutine cgca_rmmiddle( node, stat )
type( cgca_lnklst_node ), pointer, intent( in ) :: node
integer( kind=idef), intent( out ) :: stat

The memory occupied by the removed node is freed. Thenode%next now points to where the
node belownode%next was pointing. If the node below the given node was NULL, i.e. if node%next
was not associated, thenstat is set to1. Otherwisestat is set to0.

type( cgca_lnklst_node ), pointer :: tmp
stat = 0
tmp => node%next
if ( associated( tmp ) ) then

node%next => tmp%next
deallocate( tmp )

else
stat = 1

end if

The action of this routine can be schematically illustrated below.

First consider the case whennode%next is associated. If on inputnode%value is xx , then the
list before calling this routine is shown on the left. The right diagram shows the list after a call to this rou-
tine. stat is set to0.

lnklst5.gv

...

value=xx next

value=zz next

...

lnklst6.gv

...

value=xx next

value=aa next

value=zz next

...

Now consider the case when the list consists of a single node, i.e. if thenode is the head. On input
the list can be shown schematically as follows.
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lnklst2.gv

next

NULL

value

On output, thehead%next will be not associated, sostat will be set to1. The linked list is no
more. Ifthe list is required again, it has to be re-initialised withcgca_inithead .

8.3.

8.3.1.

Module with routines for simulating cleavage propagation. Themodule contains a number of rou-
tines:

1 August 2017



-26-

8.3.1.1.

This routine updates the grain boundary connectivity arraygc . This is a private array in module
cgca_m2gb . That module contains routines for analysing grain boundaries. Access togc is only via rou-
tines of modulecgca_m2gb.

Routinecgca_gcupd callscgca_gcf from modulecgca_m2gb to updategc .

The point of the grain connectivity arraygc is to record the state of grain boundaries between grains.
The boundary can be intact or fractured. The idea of the grain boundary array is a workaround the lack of
accurate stress/strain redistribution across the microstructure. If an accurate physically sound algorithm for
stress/strain redistribution has been implemented, then the grain connectivity array or routine
cgca_gcupd would not be needed. Redistribution of stress/strain or other FE fields over CA is usually
calledlocalisation, a process where the coarse scale field is redistributed (localised) over finer scale
(Kouznetsova, 2001).

However, at present, no good physically sound algorithm has been implemented in CGPACK. This
means that local CA stresses are not updated quickly enough with each crack propagation step. This leads
to situations where a grain boundary fracture on one image is not resulting in reduction/elevation of stress
in neighbouring images. This can lead to situations where grain boundary between two grains is fractured
multiple times on multiple images containing this grain boundary. This result is not physical.

The grain connectivity array,gc , is created to compensate for this lack of physics. Atpresentgc is
updated after each CA iteration by callingcgca_gcupd .

It is possible that grains are very large compared to coarrays on each image, e.g. much larger than the
coarray size on each image. This would mean that a grain can span many images. Iftwo adjacent grains
are large, then the grain boundary between these grains can be present on many images. Inthis case the
fact that the specific grain boundary has been fractured on some image might have to be propagated to
many imagesbeyondthe nearest neighbours. The only way to be sure that the information reaches all rele-
vant images is to communicate it to all images. Hence a very undesirable all-to-all communication pattern
emerges.

Grain boundary failures are recorded by each image in its coarray arraygcupd , which is defined in
modulecgca_m3clvg . At the end of every CA iteration, each image adds to itsgcupd information on
failed grain bondaries collected from other images.

The routine loops over all images, starting at a randomly chosen image. It readscgupd array from
each image into a local copygcupd_local:

gcupd_local( : , : ) = gcupd( : , : ) [img_curr]

gcupd is reset tocgca_gb_state_intact at the start of each CA iteration. So whengcupd is ana-
lysed at the end of the CA iteration, only entries withgcupd( : , 3 ) .ne.
cgca_gb_state_intact trigger a call ofcgca_gcf to updategc on that image.

All-to-all does not scale.For that reason a simplified version of this routine is implemented in
cgca_gcupdn , where the information is collected only from the nearest neighbouring images.
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