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ABSTRACT
CGRACK is a cellular automata library for microstructureotution, deformation

and fracture. The library is designed for use on HPC systems. It is implemented in For-
tran 2015 with extenge use of coarrays for parallelisation.
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1. CGPACK library layout

The library is made up of a set of modules. All modules are named following this scheme:
cgca_mL<module name.f90 orcgca_mL<module name.F90, where file extensid80 means that the
file does not need pre-processing, and file extei8@nmeans the file requires pre-processihds an
integer numbemgiving thelevelof each module. module nameis a dring of characterfa-z]

The lowest lgel is 1. Modules of lgel L+1 depend only on modules of/i# L and lower So mod-
ule of level 3 depends only on modules of/éts 2 and 1. Modules of Vel 1 do ot depend on another
modules. Thenly exception is the topvel module that is namecgca.F90 . At the time of writing
these are the C@RK modules:

cgca.F90
cgca_mlco.fo0
cgca_m2alloc.f90
cgca_m2gh.fo0
cgca_m2geom.fo0
cgca_m2gim.fo0
cgca_m2hx.fo0
cgca_m2Inkist.fo0
cgca_m2mpiio.fo0
cgca_m2out.F90
cgca_m2pck.F90
cgca_m2phys.fo0
cgca_m2red.fo0
cgca_m2rnd.fo0
cgca_m2rot.fo0
cgca_m2stat.fo0
cgca_m3clvg.FO0
cgca_m3gbf.fo90
cgca_m3nucl.fo0
cgca_m3pfem.fo0
cgca_m3sld.F90
cgca_m4fr.fo0

2. Code availability
The code isailable from

http://cgpack.sourceforge.net
Full sources are alswailable as ROBOdoc auto-generated documents:

html: http://cgpack.sourceforge.net/robodoc/toc_index.html
pdf: http://cgpack.sourceforge.net/robodoc/cgpack.pdf
text: http://cgpack.sourceforge.net/robodoc/cgpack.txt

Most CGRACK code is distributed under BSD licence. Selected parts oiAC&Rre distributed under the
Apache license.

3. Building CGPACK
To huild CGRACK do (adjust for your environment):

mkdir $HOME/cgpack
mkdir $HOME/lib
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On some platforms, e.g. when using the Intel Fortran comggearate module files, extension
.mod, will be created. On such platforms add a directory to store the module files, e.qg.:

mkdir $HOME/mod

Then put the source code somewhere, e.g.:

cd $SHOME/cgpack
svn co https://svn.code.sf.net/p/cgpack/code/ .

And build using one of the providédakefile s, adjusting for your environment, e.g.:

cd head
make -f Makefile-mpiifort
make -f Makefile-mpiifort install

This will build the library unde$HOME/cgpack and install it undesHOME!/lib/libcgpack.a Cf
separate module files were built too, these will be installed @t©ME/mod

4. Celular automata (CA)

There is extense background literature on CA (Vichniac, 1984; Chopard, 1998; Phillips, 2001,
LeSar 2013). TheCGFACK library is designed for 3D analysis. The 26 cell neighbourhood (Moore’s
neighbourhood) is assumed (Shterenlikht, 2015).

The library provides parallelisation via coarrays, which arenalaeguage element introduced in
Fortran 2008 standard (Shterenlikht, 2015). The central feature of the librarysisateoarray This is
an allocatable integer array coarragfined as follows.

integer( kind=iarr ), allocatable, intent(inout) :: coarray(:,:,:,})[:,:,]

whereiarr is an integer kind used for the space coarfsykinds and other parameters are defined in
modulecgca_ml1co.f90 . Space coarray is allocated by routogra_as from module
cgca_m?2alloc.f90 . Routinecgca_as takes mawinput parameters:

subroutine cgca_as( 11, ul, 12, u2, 13, u3, coll, coul, col2, cou2, &
col3, props, coarray )

and allocates the space coarray as follows.

allocate( coarray( &
[1-halo:ul+halo, I2-halo:u2+halo, I3-halo:u3+halo, props) &
[coll:coul, col2:cou2, col3:*])

5. Halo exchange

5.1. Global halo exchange

This is required if self-similar (or periodic) boundary conditions are preferred. Self-similar BC are
probably more useful than fixed BC when grain statistics are impofanexample, if fixed BC are used
grains touching the boundary are not growing amiiveng in the same way as grains which border only
other grains. If sufficiently margrains are simulated, then self-similar BC imgra@yain size statistics.
Otherwise the grains touching the model boundary must be excluded from the analysis.

Global halo exchange is more comptban local.

5.1.1. 2D planes

5.1.2. 1D edges
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The same diagram is used for exchanging edges along all tle®eExecoord. systems in the middle are

to help understand the array assignments.
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along all three aes. Thecoord. systems in the middle are to help understand the array assignments.}

6. Messages

CGRACK design assumes that routines might need to pass messages to. tideiseare four lev-
els of user messages:

1. information
2 warning

3. error

4 delugging

Each message is written to stdout as a single linexbf 8omemessages can be long, soythéght
wrap when viewed in some editors. The decision not to break a message into multiple one-line chunks was
taken to simplify searching for messages, e.g. gi#ip . Having a message written as a single line makes
searching for the complete message easier.

The first field in all messages is a label showing the &&f the message, followed by a colon,
exactly one ofINFO: , WARN; ERRORor DEBUG: The standard labels are used to search for a particu-
lar type of messages:or example to check if there areyawarnings issued by the program the user can
use this command:

grep WARN <outfile>.

or

grep "WARN:"  <outfile>

or to see all debugging output, the user can issue this command:
grep DEBUG: <oultfile>

or

grep "DEBUG" <outfile>
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The second field in all messages is the name of the routine that issued that message, followed by a
colon,: , eqg. cgca_clvgsd: ,cgca_nr: , €c.

Colons are used to help separate the messages into fields, with toolsawkh as

The third field is the content of the message. This field is not standardised and will differ from one
routine to anothehopefully giving the user some helpful information.

Some messages will contain the number of the image that issued the message.

6.1. Information messages

Information messages start witHFO: . These messages are intended ve ¢fie user progress
information, where it is expected that routines mighe takhile to complete. Examples:

INFO: cgca_sld: iterations completed: 140
INFO: cgca_sld: iterations completed: 150
INFO: cgca_clvgp: iterations completed: 10
INFO: cgca_clvgp: iterations completed: 20

Accordingly the routines which provide the information messagew #il® user to specify the fre-
gueny of messaging. & example input argumeheartbeat in routine

subroutine cgca_clvgp( coarray, rt, t, scrit, sub, periodicbc, iter, &
heartbeat, debug )

gives the frequeng of the information messages, in this casemin the number of CA iterations.

6.2. Warning messages

Warning messages start WMIARN: These messages are intended to warn the user of unexpected
input, undesirable settings, unexpected, but not fatal, runtime conditions, etc. Example:

WARN: cgca_gcr: image 1144: No match found for given pair: 3904 2126.
WARN: cgca_nr: too many nuclei - no physical sense! nuclei/model size: 0.683E+06

The user generally does nowkahe control @er warning messages. These are issued based on the logic of
the CGRRACK library. Itis up to he user what action to talon eicountering one of the warning messages.
Some warnings might safely be ignored. Other warnings, such as the second wanenmigho indicate

that the results lva ro physical sense. The user can then decide to terminate the analysisheartie the

input values and rerunYet other warnings might indicate unexpected conditions demanding furtkesr in
tigation, e.g. the first warning ab®

6.3. Error messages
Error messages start WiHRROR:

CGRACK was designed to treat all errors ataf. Infact all error conditions are implemented with
ERRORSTOHRrortran 2008 intrinsic which initiates error termination. The program is expected to exit as
soon as possible. Therefore it is expected that there will not be more than a single error message issued by
ary CGFACK program. Thigmeans that searching for error messages might not be needed.

Typical conditions resulting in the issuing of error messages, e.g. in error termination, are insufficient
memory when allocating arrays or conditions which violate the model logic, e.g. passing non-existent grain
numbers or image numbers. Examples:

ERROR: cgca_dv: cannot deallocate coarray
ERROR: cgca_gc: coarray not allocated, img: 17

6.4. Debugging messages
Debugging messages start WREBUG:
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Some routines provide a capability to print debugging output on rede@stxample, input argu-
mentdebug in routine

subroutine cgca_clvgp( coarray, rt, t, scrit, sub, periodicbc, iter, &
heartbeat, debug )

is a logical ariable. Ifdebug = .true. then some debugging information will be dumpted to stdout
by that routine, and by all routinessaked by this routine, if ag of them provide debugging capability.

For example, routinegca_clvgp  above alls routinecgca_clvgsd  which prints debug ouput when
debug = .true. is passed to cgca_clvgp:

DEBUG: cgca_clvgsd: img: 6: newstate=-3, calling cgca_gcf, gcupd=(34 9 1),
marr=(992792727927279927934343434349343434343434
34 34).
DEBUG: cgca_clvgsd: img: 2: newstate=-4, calling cgca_gcf, gcupd=(27 34 1),
marr=(27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 34 27 2799934 34 34
34 34 34).
Note that the long lines of debugging outputéhbeen wrapped here.

The volume of debugging output can be vergédarTheuser is advised to use caution when asking
for debugging output, particularly on large core counts. In some cased debugging output can exceed sev-
eral GB.

7. Interfacing with ParaFEM

PaaFEM is a parallel scalable finite element library written in Fortran 90/95/2003 with MPI library
for communications. The main web site is:

http://parafem.org.uk
The code is\ailable via svn from:
http://sourceforge.net/projects/parafem

The best documentation for the code is Dr Margetts’ book (Smith, 2014), specifically chaRaraEEM
is distributed under BSD licence.

Intefrace of CGRCK with ParaFEM is implemented in modwgca_m3pfem.f90 . The module
includes the following routines:
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cgca_pfem_boxin
cgca_pfem_cellin
cgca_pfem_cenc
cgca_pfem_cendmp
cgca_pfem_centroid_tmp
cgca_pfem_ctalloc
cgca_pfem_ctdalloc
cgca_pfem_ealloc
cgca_pfem_edalloc
cgca_pfem_enew
cgca_pfem_intcalcl
cgca_pfem_integalloc
cgca_pfem_integdalloc
cgca_pfem_integrity
cgca_pfem_partin
cgca_pfem_salloc
cgca_pfem_sdalloc
cgca_pfem_sdmp
cgca_pfem_simg
cgca_pfem_stress
cgca_pfem_uym
cgca_pfem_wholein

7.1. Mapping

Consider a body of arbitrary shape and size:

body (domain)

Consider a "box" of cells, i.ea rectilinear array of arbitrary size

material

that occupies some or all of the space occupied by the body:
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multi-scale model

Here the dashed lines are the box edges obscured by thexmbdlyin dotted lines are the outlines of the
body obscured by the box.

So there are bits of the material box which are outside of the &udiyhere are bits of the body
which are outside of the material box. These regions are of no interest to usvetidwaell be important
to identify such rgions. Theregions of space which are occupied by the body and by the material box are
subject to multi-scale analysis.

We assume that the number of coarray images and MPI processewaye identical. This is cur-
rently the case on Cray and Intel systems.

The following illustration of the MPIl/coarray multi-scale model is drawn for 4 MPI processes and 4
coarray imagesPaaFEM is written in fortran. Hence MPI ranks start from 1.

multi-scale model

There are 4 sub-domains, processed by 4 MPI processes with ranks 1 to 4. These are denoted by thin solid
lines drawn on top of the bodyrhere are 4 images with the coarrays of cellular microstructure. These are
also denoted by thin solid lines drawn on top of the material box.

Each process has its chunk of finite elements and its microstructure cddreag are tw problems.
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1. SomeFE hare ro corresponding cells and some cellséao corresponding FEs. Corresponding
here means occupying the same space.

2. FEsand cells that do correspond to each other are wayslallocated to the same processor.

ﬁ\ ‘4‘ ’»4‘
A=

processor 1 processor 2 processor 3 ocessor 4

The boxes represent the processors, or in Cray termingagessing elements (PE). Each PE is
given an MPI rank and a coarray image numb&hese ar@ot guaranteed to be identical. On Cray sys-
tems on ayp PE MPI rank is identical to the image numbéit present the interface relies on the fact that
MPI rank is identical to the coarray image numbéthis is not the same of asystem, then the interface
will not work.

The arrows in this diagram indicate data transfer between CA and FE. Coarray on PE\levill ha
communicate with FE on PE 3. FE on PE 1 willd#®@ communicate with coarrays on PEs 2 and 3. And
so on. Note that FE on PE 4 do not communicate with CA at all, because none of these FEheccup
same physical space as CA. &ilise, it is possible, although not shown in this diagram, that coarrays on
some image will not need to communicate with FE at all. This will happen if none of these cells will share
space with FE.

It is a major assumption of the framark that the mapping between the FE and CA is not affected by
the deformation.For small deformation problems this assumption is naturat.large deformation prob-
lems this assumption means that the CA arraigisrmingtogether with FE. This assumption means that
the mapping between CA and FE is established based on the initial, undeformed, gencthistnyot
changed throughout the analysis.

The benefits of this approach are that the CA halo exchange algorithm is unaffected by linking CA to
FE. Indeedas far as CA is concerned, not much is changing at all.

One drawback of this simple mapping scheme is that there might be lots of communications across
the node boundaryThese correspond to the arrows crossing the box boundaries in the diagramlabo
the example of the illustration there are four inter-processoe-CAE arrows, and only a single CA FE
arrav on the same process®E 2 Howevae, this is a performance problem, which wilMego be
addressed later.

The first problem in constructing the interface following this general scheme is that each image must
know which MPI processes to communicate with to obtain the FE data.

Let's denote the FE coordinate system (CS)X)¥, and the CA CS bx“A. The CA model "box" is
always aligned with the CA CS. Letdenote the origin of the CA CS in the FE CS systemeBy LetR
be the rotation tenséiromthe FE CSo the CA CS. Then coordinates of some point P in the FE and the
CA CS are related as follows:

XCA =R HXFE _ XEE)

XFE - RT D(CA_'_XEE

These relationships are illustrated lvefor a coarray on a single image.
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CA
FE

FE l 2

Y

CA

Herex$” andxS” denote the extents of the coarray model space on each image.

Each image knows its ow” andx$”. The algorithm for constructing the mapping includes the
following steps:
1. Findout what MPI processes contain FEs vitittial centroid coordinates inside the coarray "box" on
each image.
2. Findall element numbers from each MPI process thet ftacommunicate with the coarray "box"
on each image.
The key PaaFEM/CGRACK interface data structure is the allocatablegilocal, i.e. non-coarray,
array of dewed typelcentr  established on each image. This array contains centroids of all finite ele-
ments linked to this image, including the element numbers and the images where these elements are stored.
This array is defined as:

type mcen

integer( kind=idef ) :: image

integer( kind=idef ) :: elnum

real( kind=cgca_pfem_iwp ) :: centr(3)
end type mcen
type( mcen ), allocatable :: Icentr(;)

Below is the illustration of the use édentr  array Consider 2 images, P and Q. The CA array on
image P might hae to communicate with FE which are stored on the same image, and also with those FE
which are stored on other imagdor example FE with centroid coordinatess FE number n, that is
stored on image Q. Getting and sending data to this FE wdlvia inter-image communication. FE with
centroid coordinatesis FE number b, which is stored on the same image.

Similarly on some other image Q, a FE with centroid coordinaie$E number m, that is stored
locally on the same image. Howee, FE with centroid coordinateisis FE number a, that is stored on
image Pso remote put/get operations will be required to communicate with that FE.

Note the ey role played bycentr  array in linking FE with CA.
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image P image Q
MPI process P MPI process Q
elements CA elements CA
or
b m
o° Ut
e
a n
lcentr lcentr
image QP image Q... P...
elnum ...n...b elnum m...a.
centr R S T centr Ut

Usinglcentr array it is possible for gnimage to kne what finite elements it needs to exchange
the data with, and to what images these belong:

CA onimg 91 <-> FE 1266 on img 163 centr. in CA cs 2.55, 8.45, 4.95
CA onimg 57 <-> FE 3104 on img 34 centr. in CA cs 5.00E-2, 1.75, 4.95
CA onimg 36 <-> FE 435 on img 131 centr. in CA cs 3.85, 6.75, 2.45
CAonimg 1 <->FE 2292 onimg 2 centr. in CA cs 2*5.00E-2, 2.45

CA onimg 141 <-> FE 4000 on img 162 centr. in CA ¢s 5.15, 8.45, 7.45
CAonimg 1 <->FE 2293 on img 2 centr. in CA cs 0.15, 5.00E-2, 2.45
CAonimg 1 <->FE 2294 on img 2 centr. in CA cs 0.25, 5.00E-2, 2.45
CAonimg 1 <->FE 2295 on img 2 centr. in CA cs 0.35, 5.00E-2, 2.45

This data is dumped by routiegca_pfem_cendmp of modulecgca_m3pfem . The finite element
numbers are local to their images. It is possible to calculate the global FE nbmlieere is no need. A
combination of the image number and the finite element number identify the FE uniguredxample, the
first line in the abee autput says that finite element 1266 stored on image 163 has centroid coordinates
(2. 55, 8. 45, 4. 95 the CA coord. system. Material with these coordinates is processed with CA on
image 91.

After Icentr  has been established, the second important mapping issue can tedre€als
which are outside of the FE model must not be processed. This means no fracture propagation can occur in
such cells. Howeer, Snce there is finite resolution in FE model and in CA, this problem cannot be posed
precisely Depending on the FE size and the CA cell size, a cell can be deemed to lie inside the FE model
or out. The algorithm implemented in the library uses some characteristic distance nigasiine,
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criterion is this - if the distance between a cell and the centr@dydfE inlcentr is less thar_ ., then

this cell is considered to lie inside the FE model, otherwise it is considered to lie outside of the FE model.
All cells in the fracture layewhich lie outside of the FE model, are@i datecgca_state null ,

defined in modulegca_mlco . These cells are not processed at all i@frthe fracture routines.

Although these cells represent material in the material,lhyisemmaterial is simply ignored in all fracture
calculations.

The algorithm is very simple. Just loop through all cells on an image. Routine
cgca_pfem_cellin checks whether a cell is in or out.

However, some optimisations are possiblEor example, if some assumptions on smoothness of FE
model boundary are made, then it can be assumed that if all 8 corner cells of some sub-image CA box are
either in or out, then other cells inside the box tlhaveto be checkd. Thesean be assumed toveathe
same state as the 8 corner cells. Routgea_pfem_boxin  does this check.

How to choose a sub-image box® simple algorithm is to start from the whole box and do binary
division along the longest dimension of the box. If a sub-box is neither in nor out, i.e. some of the 8 corner
cells are in and some are out, then this sub-box is divided into 2 smaller boxes, and so on until the smallest
box gets to be a single cell. Routicgca_pfem_partin implements this algorithm.

There also anven smple routine. If the whole of the CA array on an image is out, ileeiftr  is
empty on an image, then all cells are marked as out. Rawgase pfem_wholein  implements this
algorithm.

The sub-box algorithragca_pfem_partin needs to maintain a list of boxes to check. Module
cgca_m2Inkist  has seeral routines to establish, maintain and delete a linked list. When a sub-box is
partly in, and is split into tavamaller boxes, the sub-box is remed from the list and the mesmaller
boxes are added to it.

7.2.
Current work on the interface is carried unget4 PaaFEM deeloper programs:

http://sourceforge.net/p/parafem/code/HEAD/tree/trunk/parafem/src/programs/dev/xx14/

There are 3 programsx14.f90 , xx14noio.f90  andxx14std.f90 . Programxx14.f90 and
xx14n0i0.f90  include Cray extensions to the 2008 standard, na@@lySUMxx14noio.f90 has
no CA model 10. This program should be used for timing the optimisingAC&Rvithout being biased
by 10 timing issuesxx14std.f90  conform to f2008 strictly Specifically it has no colleates, and is
thus suitable for use with Intel compilers, which do not yet support ceéscti

The programs simulate deformation in a 3D bodypart of this body is mapped to a microstructure
array established and processed via @GR. Currentlyxx14 all programs build and run on Archend
xx14std builds and runs on Intel systems.

7.3.
The stress coarray of desd type with allocatable array component is establishedreny @nage:

type type_stress

real( kind=cgca_pfem_iwp ), allocatable :: stress(:,:,:)
end type type_stress
type( type_stress ) :: cgca_pfem_stress[*]

Its allocatable array component is allocated by rowdgea_pfem_salloc
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subroutine cgca_pfem_salloc( nels_pp, intp, comp )

I NPUTS
n els_pp - number of elements on this image
i ntp - number of integration points per element

!
!
!
! ¢ omp - number of stress tensor components

integer, intent(in ) :: nels_pp, intp, comp
as
call cgca_pfem_salloc( nels_pp, nip, nst)

wherenels_pp is the number of elements per MPI procegs, is the number of integration points per
element anaist is the number of stress tensor components, 6 in 3D case.y Boage can access stress
tensors on another image, e.g.:

img 96 FE 1 int. p. 8 stress  -3.12E-01 -3.31E-01 -1.40E-01 -5.59E-03
1.38E-02 4.41E-02

This is the stress tensor for integration point 8 of element 1 on image 96. In this example eleraghts ha
integration points.

3. Eachoad/time iteration FE passes to the Cyeléhe nav stress tensoig, There will be a provision
for passing other variables to CA in future.

4. Doa certain number of iterations of crack propagation algorithm. The number of iteration is set with
the characteristic length scale. (At present the characterstic length scale is taken equal to the longitu-
dinal wavespeed, more precisely the lengthvétied by the longitudinal @veper unit of time.)

5. Thedamage variabld, is calculated for each CA "box". The Yousgiodulus of all integration
points within the box is scaled as

Enew — Eoriginal x D

Originally D = 1. WhenD = 0 material has no remaining load bearing capadityis the ratio of the
number of the fractured cells to the cracteristic area.

8.
8.1.
8.2.

8.2.1

Module with routines for creating and updating of a linked list. The module contairtetived
types:

and the following routines:

The list has to be established first with
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This is a desied type with a pointer component of the same type to maintain a link to other variables
of the same type. The type is:

type cgca_Inkist_node

type( cgca_Inklst_tpayld ) :: value

type( cgca_Inkist_node ), pointer :: next
end type cgca_Inklst_node

This type allows for a standard one-direction linked list, which can be schematically illustrated as:

vaue | next

vaue | next

value | next

V

Inklstl.gv

whereNULL means the pointer is not associated.
Access to the list is possible only from the head (top) node.
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8.2.1.2.
This is the type for payload, i.e. the data contained in each node of the list.
type cgca_Inkist_tpayld

integer :: lwr(3), upr(3)
end type cgca_lInklst_tpayld

The intention is that the data consists of the coordinates of theotwers of a CA box, the lower and the
upper The lower corner is that which has the lowest coordinates along all 3 directions. The upper corner is
that which has the upper coordinates along all 3 directibasexample

Iwr = (/ 1,200, 31/)
upr = (/ 10, 202, 3000 /)

would denote a box extending from 1 to 10 along direction 1, from 200 to 202 along direction 2, and from 3
to 3000 along direction 3.
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8.2.1.3.
This routine adds a menodeon topof the current head. The list becomes longer by one node.

subroutine cgca_addhead( head, payload )
type( cgca_Inkist_node ), pointer, intent( inout ) :: head
type( cgca_Inkist_tpayld ), intent(in) :: payload

Pointer to the head node ivgi as hput. Memoryis allocated for one node. It&lue is set to
payload . It's next is pointed to the previodsead, i.e. tohead%next . The pointer to the nelwead
is returned.

type( cgca_Inkist_node ), pointer :: tmp
allocate(tmp)

tmp%value = head%value

tmp%next => head%next

allocate( head )

head%value = payload

head%next => tmp

The action of this routine is illustrated schematically Wweltmagine thesalue of thehead node
was xx before calling this routine. The list prior to calling this routine is shown on the left. The list after
this routine was called withalue=aa is shown on the right.

vaue=xx | next vaue=aa| next

value=zz| next

vaue=xx | next

value=zz| next

Inklst3.gv

Inkist4.gv
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8.2.14.
This routine adds a menodebelowthe given node. Thdist becomes longer by one node.

subroutine cgca_addmiddle( node, payload )
type( cgca_lnkist_node ), pointer, intent(in ) :: node
type( cgca_Inkist_tpayld ), intent(in) :: payload

The pointer to an arbitraryode is given as hput. Notethat this does not need to be the head node. Mem-
ory is allocated for one node andvtdue set topayload . node%next points to the ne node. The
new node’'s%next points to where thaode%next was pointing before calling this routine.

type( cgca_Inkist_node ), pointer :: tmp
allocate(tmp)
tmp%value = payload
tmp%next => node%next
node%next => tmp

If the routine was called withode pointer set to pointing on the node withlue=xx , and with
payload=aa , then the diagrams beloschematically illustrate the lists before calling this routine (left)
and after (right).

value=xx | next value=xx | next

value=zz| next
vaue=aa| next

vaue=zz| next

Inklst5.gv

Inkist6.gv
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8.2.15.
This routine is used to initialise the list, i.e. create the first node.

subroutine cgca_inithead( head, payload )
type( cgca_Inkist_node ), pointer, intent( out ) :: head
type( cgca_Inkist_tpayld ), intent(in) :: payload

The routine allocates memory for one node, setsitse to payload and returns the pointer to
this node irhead. The node':ext is set toNULL, i.e. the pointer is not associated:

allocate( head )
head%value = payload
head%next => null()

After calling this routine the linked list will look l&this:

value | next

V

Inklst2.gv
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8.2.1.6.
This routine dumps thealue fields of all nodes on the list to stdout.

subroutine cgca_lstdmp( head )
type( cgca_Inkist_node ), pointer, intent(in) :: head

The algorithm is to start with the head node andartbwnwards one node at a time until a node’s
%next is not associated.

type( cgca_Inkist_node ), pointer :: tmp
if (.not. associated( head ) ) return
tmp => head
do

write (*,*) tmp%value

tmp => tmp%next

if (.not. associated( tmp ) ) exit
end do

A typical output might look li& this.

40 31 59 49 39 77
40 21 59 49 30 77
40 21 40 58 39 58
40 1 40 77 20 77
40 1 1 77 39 39
1 1 1 39 39 77
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8.2.1.7.

This routine remees the head node. The node that was Welte head becomes the head node. The
list becomes shorter by one node.

subroutine cgca_rmhead( head, stat )
type( cgca_Inkist_node ), pointer, intent( inout ) :: head
integer( kind=idef ), intent( out ) :: stat

Pointer to thénead node is gien as nput. Pointeto head%next is returned as netvead . Mem-
ory for the oldhead node is deallocated. On outmiat is set tol if head is NULL, i.e. ifhead is not
associated. Otherwistat is settd0. If head is not associated on enttiien the routine just sessat
to 1 and «its. If the list consists of only a single node, then onlexitd will be not associated. Skiat
will be set tol.

type( cgca_Inkist_node ), pointer :: tmp
stat=0
if (associated( head ) ) then
tmp => head
head => head%next
deallocate( tmp )
end if
if (.not. associated( head ) ) stat =1

The action of this routine is illustrated schematically Wwelo

First consider the case when the list is longer than a single node. Before calling this routine the
value of thehead node isxx (left diagram). After calling this routine the head node becomes the one
with thevalue of zz. Sincehead%next is associatedstat is set td0.

@ next value=zz | next

value=zz| next

Inklst7.gv

Inkist3.gv

Now consider the case when the list consists of a single node. On input the list can be shown
schematically as follows.
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vaue | next

Inkist2.gv

On output, thdnead%next will be not associated, stat  will be set tol. The linked list is no
more. Ifthe list is required again, it has to be re-initialised wgba_inithead
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8.2.1.8.
This routine remees a rodebelowthe given node.

subroutine cgca_rmmiddle( node, stat )
type( cgca_lnkist_node ), pointer, intent(in ) :: node
integer( kind=idef), intent( out ) :: stat

The memory occupied by the rewed node is freed. Thaode%next now points to where the
node belownode%next was pointing. If the node bele the gven node was NULL, i.e. if node%next
was ot associated, thestat is set tol. Otherwisestat is set ta0.

type( cgca_Inkist_node ), pointer :: tmp
stat=0
tmp => node%next
if (associated( tmp ) ) then
node%next => tmp%next
deallocate( tmp )
else
stat=1
end if

The action of this routine can be schematically illustratedabelo

First consider the case wheade%next is associated. If on inpubbde%value is xx, then the
list before calling this routine is shown on the left. The right diagram shows the list after a call to this rou-
tine. stat is set t0.

value=xx next

value=xx next

value=aa| next

vaue=zz next

vaue=zz next

Inklst5.gv

Inklst6.gv

Now consider the case when the list consists of a single node, i.enibdeeis the head. On input
the list can be shown schematically as follows.
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vaue | next

Inkist2.gv

On output, thdnead%next will be not associated, stat  will be set tol. The linked list is no
more. Ifthe list is required again, it has to be re-initialised wgba_inithead

8.3.

8.3.1

Module with routines for simulating cleage propagtion. Themodule contains a number of rou-
tines:
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This routine updates the grain boundary connectivity ajcayThis is a prate array in module
cgca_m2gb . That module contains routines for analysing grain boundaries. Accgsdg®nly via rou-
tines of modulegca_m2gb.

Routinecgca_gcupd callscgca_gcf from modulecgca_m?2gb to updatgyc.

The point of the grain connectivity arrgg is to record the state of grain boundaries between grains.
The boundary can be intact or fractured. The idea of the grain boundary array is a workaround the lack of
accurate stress/strain redistribution across the microstructure. If an accurate physically sound algorithm for
stress/strain redistribution has been implemented, then the grain connectivity array or routine
cgca_gcupd would not be needed. Redistribution of stress/strain or other FE fidd€A is usually
calledlocalisation a process where the coarse scale field is redistributed (localiserd)reer scale
(Kouznetswa, 2001).

However, & present, no good physically sound algorithm has been implemented BGBGH his
means that local CA stresses are not updated quickly enough with each crack propagation step. This leads
to situations where a grain boundary fracture on one image is not resulting in redustiboretd# stress
in neighbouring images. This can lead to situations where grain boundary betwegains is fractured
multiple times on multiple images containing this grain bound@hys result is not physical.

The grain connectivity arragc, is ceated to compensate for this lack ofgihs. Atpresengc is
updated after each CA iteration by callcgra_gcupd .

It is possible that grains are very large compared to coarrays on each image, e.g. much larger than the
coarray size on each image. This would mean that a grain can spaimmages. Iftwo adjacent grains
are large, then the grain boundary between these grains can be present onages. Irthis case the
fact that the specific grain boundary has been fractured on some image m&btbapopagated to
mary imageseyondhe nearest neighbours. The only way to be sure that the information reaches all rele-
vant images is to communicate it to all images. Hence a very undesirable all-to-all communication pattern
emerges.

Grain boundary failures are recorded by each image in its coarraygatag , which is defined in
modulecgca_ma3clvg . Atthe end of eery CA iteration, each image adds togmupd information on
failed grain bondaries collected from other images.

The routine loops\er all images, starting at a randomly chosen image. It regdpd array from
each image into a local coggupd_local:

geupd_local(:, : ) =gcupd(:, :) [img_curr]

gecupd is reset tacgca_gb_state_intact at the start of each CA iteration. So wiggupd is ana-
lysed at the end of the CA iteration, only entries withpd( : , 3) .ne.
cgca_gb_state_intact trigger a call okcgca_gcf to updategc on that image.

All-to-all does not scaleFor that reason a simplified version of this routine is implemented in
cgca_gcupdn , where the information is collected only from the nearest neighbouring images.
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