
Modelling fracture in heterogeneous materials on

HPC systems using a hybrid MPI/Fortran coarray

multi-scale CAFE framework

A. Shterenlikht1, L. Margetts2, L. Cebamanos3

1Mech Eng Dept, The University of Bristol, Bristol BS8 1TR, UK,
mexas@bris.ac.uk,

2School of Mechanical, Aero and Civil Engineering,
The University of Manchester, Manchester M13 9PL, UK,

Lee.Margetts@manchester.ac.uk,

3Edinburgh Parallel Computing Centre (EPCC), The University of
Edinburgh, King’s Buildings, Edinburgh EH9 3FD, UK,

l.cebamanos@epcc.ed.ac.uk

April 16, 2018

Abstract

A 3D multi-scale cellular automata finite element (CAFE) frame-
work for modelling fracture in heterogeneous materials is described.
The framework is implemented in a hybrid MPI/Fortran coarray code
for efficient parallel execution on HPC platforms. Two open source
BSD licensed libraries developed by the authors in modern Fortran
were used: CGPACK, implementing cellular automata (CA) using
Fortran coarrays, and ParaFEM, implementing finite elements (FE)
using MPI. The framework implements a two-way concurrent hierar-
chical information exchange between the structural level (FE) and the
microstructure (CA). MPI to coarrays interface and data structures
are described. The CAFE framework is used to predict transgranular
cleavage propagation in a polycrystalline iron round bar under tension.
Novel results enabled by this CAFE framework include simulation of
progressive cleavage propagation through individual grains and across
grain boundaries, and emergence of a macro-crack from merging of
cracks on preferentially oriented cleavage planes in individual crystals.
Nearly ideal strong scaling up to at least tens of thousands of cores
was demonstrated by CGPACK and by ParaFEM in isolation in prior
work on Cray XE6. Cray XC30 and XC40 platforms and CrayPAT
profiling were used in this work. Initially the strong scaling limit of

1

hybrid CGPACK/ParaFEM CAFE model was 2,000 cores. After re-
placing all-to-all communication patterns with the nearest neighbour
algorithms the strong scaling limit on Cray XC30 was increased to
7,000 cores. TAU profiling on non-Cray systems identified deficiencies
in Intel Fortran 16 optimisation of remote coarray operations. Finally,
coarray synchronisation challenges and opportunities for thread paral-
lelisation in CA are discussed.

Keywords: fracture; heterogeneous materials; multi-scale; Fortran coar-
rays; MPI; strong scaling; profiling; cellular automata; finite elements

1 Introduction

Deformation and fracture problems of solid mechanics often involve multiple
competing physical processes occurring at different time and length scales.
Examples of such processes are phase transformation (10ps, 10nm), disloca-
tion nucleation and propagation (10ps, 50nm), twin formation (1ns, 1nm),
interaction of dislocations (100ns, 100nm), secondary microcrack nucleation
in the process zone (10ns, 100µm), adiabatic shear (10µs, 100µm). How-
ever, engineering scale crack growth and component failure typically occur
at much higher time and length scales (10−3 to 101s, 10−3 to 101m). A
variety of multi-scale modelling approaches aimed to link different time and
length scales together into a coherent model to deliver engineering scale pre-
dictions have been proposed to treat such problems, e.g. combined atomistic
and continuum mechanics [1], molecular dynamics and continuum mechanics
[2], discrete dislocation and continuum plasticity [3], to name but a few.

The cellular automata (CA) method has been used together with finite
elements (FE), in a multi-scale cellular automata finite element (CAFE)
framework for problems involving material microstructure, such as solidifi-
cation [4], recrystallisation [5] or fracture of polycrystals [6, 7, 8, 9, 10, 11].
FE is used to solve the continuum mechanics problem (coarse scale) to cal-
culate the macroscopic quantities, such as the strain, stress or tempera-
ture gradients, while the microstructure (fine scale) is updated with the CA
method. At each iteration of the CAFE model continuum mechanics quan-
tities are passed from the coarse FE scale to the fine CA scale (localisation)
and damage variables are passed from the CA scale back to the FE scale
(homogenisation) [12]. Thus CAFE is a two-way hierarchical concurrent
multi-scale framework [13].

In the 3D CAFE method the Cartesian coordinate system is used and
space is partitioned into identical cubic cells. Cells have physically mean-
ingful states, e.g. liquid phase, intact crystal with a certain rotation tensor,
crack front, crack flank, cleavage plane of a particular type, etc. [7]. The
state of each cell at the next iteration is determined by the state of that cell,
the states of its immediate neighbourhood cells, (e.g. the 26-cell Moore’s

2

neighbourhood) and some continuum FE field variables (e.g. stress, strain
or temperature), all taken at the current iteration.

Most CAFE implementations to date use serial algorithms, partly be-
cause of the lack of scalable FE solid mechanics solvers or due to restrictions
of commercial FE packages [9, 10]. However, CA has an explicitly local do-
main of influence, with no global equilibrium requirements, which opens
opportunities for parallelisation. Each cell can be updated independently -
in parallel. A much higher CA resolution can be achieved compared to the
FE method, for the same computational cost. A recent study of CA per-
formance on HPC has shown good strong and weak scaling up to 64 MPI
processes on CPU [14].

This paper describes how a highly scalable CAFE framework for HPC
was designed using a CA library implemented in Fortran 2008 coarrays and
a FE library implemented in MPI. Examples of microstructures simulated
using the CA approach are shown together with the description of the in-
formation flow between CA (coarrays) and FE (MPI). Strong scaling results
from multiple HPC systems are shown for multi-scale models of progressive
brittle crack propagation in steel components. Finally a discussion of op-
timisation possibilities of hybrid coarray/MPI codes, and challenges posed
by choosing an optimal synchronisation strategy for a coarray library is
presented.

This work is based upon [15], but the current paper includes the follow-
ing additional research: CrayPAT and TAU profiling and tracing results,
description of optimisation work, in particular replacement of all-to-all com-
munication patterns with nearest neighbour algorithms, which led to over a
three-fold increase in the scaling limit, and the latest strong scaling energy
data from a Tier-0 Cray XC40 system.

2 Fortran coarrays

A brief introduction to Fortran coarrays is given in this section. For more
details refer to [16, 17].

Fortran coarrays have been used as an extension to the standard for
over 20 years, mostly on Cray systems. Their appeal to users increased
substantially when they were standardised in 2010 [17]. Further coarray
capabilities, such as collectives, teams, events and facilities for dealing with
hardware or software failures, were published as a technical specification in
2015 [18]. These have been merged into a revised standard [19], which is
expected to be published in 2018. All Fortran standardisation documents
are available in open access from https://wg5-fortran.org, the home of
Fortran standards.

Coarrays are a native Fortran means for single program multiple data
(SPMD) type programming. A coarray is an extension of a Fortran array

3

data object in SPMD context. Square bracket syntax is used to define or
refer to a coarray object, e.g. in the following code fragment

integer :: i, ic[*], k(10,10), kc(10 ,10)[*]

real , allocatable :: r(:,:,:), rc(:,:,:)[:,:,:]

all variables declared with [] are coarray variables, and : for allocatable
variables means that dimensions and codimensions are chosen at runtime.
At run time a certain number of identical copies of the executable (called
images) are created by the operating system, which are executing asyn-
chronously. Each image has read/write access to coarray variables on all
other images:

ic[5] = i ! the invoking image copies its value of i

! to variable ic on image 5 (remote write)

! allocate coarray variable rc on all images

allocate(rc(3,3,3)[5,5,*])

! the invoking image copies the whole of array rc from

! image with coindex set [1,2,3] to its own copy of

! array r (remote read)

r(:,:,:) = rc(:,:,:)[1,2,3]

The standard defines execution segments in a Fortran coarray program,
which are separated by image control statements, such as SYNC ALL or
SYNC IMAGES. SYNC ALL statement acts as a global barrier, similar to
MPI barrier.

Coarrays can coexist with other parallel technologies, such as MPI or
OpenMP, although to date there are only a few examples of such hybrid
codes. The European Centre for Medium-rangeWeather Forecasts (ECMWF)
has used coarrays in combination with MPI and OpenMP to achieve moder-
ate scaling improvements [20]. Coarrays also have been used together with
OpenMP in plasma codes [21].

3 Cellular automata modelling of microstructure

Dendritic grain growth with CA or with lattice Boltzmann methods have
been studied extensively [22, 23, 4]. In this work a polycrystalline grain
microstructure is created using a simplified solidification process, because
the focus is on the fracture process of a final microstructure, and the exact
solidification path is immaterial.

All cells are initially considered to be of liquid state, A certain number
of randomly chosen cells represent grain nuclei. These are assigned states
representing a randomly chosen orientation tensor. At each iteration of the
solidification process a liquid cell can acquire the state of one of the 26

4

Figure 1: An example of the simulated equiaxed microstructure with 1M
grains.

randomly chosen neighbours (Moore’s neighbourhood [24]). This process is
continuing until there are no liquid cells left in the model. Both fixed and
self-similar boundary conditions can be used [7, 25, 24].

A 3D CA space with cubic cells of discrete states maps perfectly onto
a 3D integer array coarray, hence coarrays are a natural implementation
choice for CA models. In contrast the FE part of the CAFE model, which
implements the coarse scale continuum solid mechanics calculations, typi-
cally has irregular boundaries. Most often MPI is used to implement parallel
Lagrangian FE solvers.

The authors have developed a CA library for HPC systems, called CG-
PACK, http://cgpack.sf.net. CGPACK is a free open source BSD-
licensed library written in Fortran 2008 with extensive use of coarrays. All
source code and full documentation are freely available from the above URL.
Work on CGPACK started in 2013 on Cray XE6 [26]. CGPACK has since
been ported to Intel and OpenCoarray/GCC platforms.

An example of an equiaxed microstructure simulated with CGPACK is
shown in Fig. 1 where the colour denotes the orientation of each grain. This
dataset has 106 grains simulated at a resolution of 105 cells per mean grain,
i.e. 1011 cells in total. This model represents approximately a 18× 18× 18
mm3 volume of steel with the mean grain size of d of 0.2mm.

4 The coarray/MPI CAFE framework

This section describes how a highly scalable CAFE framework was designed
via an interface between parallel FE and parallel CA libraries.

5

4.1 The FE part - ParaFEM

ParaFEM is written in Fortran 2003 with MPI [27]. It is a highly scalable
and portable FE library, http://parafem.org.uk. It is a free open source
software distributed under a BSD license from https://sf.net/projects/

parafem. It is the latest extension of the sequential FE libraries originally
written by Prof. Ian Smith and first published in the 1980s [28]. Inter-
estingly, at that time, they were distributed as open source on tape by
NAG Ltd. The software now comprises modules, subroutines, functions and
around 70 example miniapps [29] (the miniapp (mini application) termi-
nology is used after [30]). The miniapps are typically 2-4 pages long and
are used to solve a variety of common engineering problems. The miniapp
philosophy enables customisation by engineers, a feature that has enabled
the work presented herein to be carried out with a reasonable amount of
software development effort.

The parallelisation strategy adopted in ParaFEM involves working element-
by-element at each stage of the finite element process, including building
element stiffness matrices, solving the system of equations and recovering
stress values (post-processing). No global matrix is ever assembled and so
domain decomposition is avoided. Each MPI process is allocated an equal
number of finite elements, balancing both computational load and memory
usage. Parallel element-by-element versions of different iterative solvers are
used for different problem types. These work in essentially the same way as
their sequential counterparts [31], with the only difference being the need to
pass messages between MPI processes when operating on distributed data
structures.

The approach has been successful in solving a variety of problem types,
from nonlinear material behaviour [32] to coupled systems involving multi-
physics, such as Biot consolidation and magneto-hydrodynamics [33]. The
software has led to scientific advances in a range of disciplines such as nuclear
engineering [34, 35], biomechanics [36, 37], geomechanics [38] and palaeon-
tology [39].

4.2 Size of the CA coarray

CGPACK module cgca_m2phys deals with physical units and sizing of the
main CA coarray. The 3D CA space is used to represent a rectilinear volume
of material microstructure, of physical dimensions l1 × l2 × l3, see Fig. 2.
The CA space is implemented as a 4D integer allocatable array coarray, with
a 3D coindex set. The first 3 array dimensions identify a particular CA cell.
The fourth array dimension is used to store multiple types of microstructural
information, e.g. grains or damage [40]:

integer ,allocatable :: space (:,:,:,:)[:,:,:]

The exact dimensions and codimensions of the coarray space are chosen

6

material

l
1l

3l

2

Figure 2: Schematic of the CA space.

at runtime, based on the available number of images, N . First the codi-
mensions are chosen, c1, c2, c3, such that c1 × c2 × c3 = N . Arbitrarily we
set c1 ≥ c2 ≥ c3. The codimensions are chosen to minimise c1 − c3, i.e. to
make the coarray grid as ‘cubic’ as possible. This is advantageous because
it minimises the total number of halo cells, and thus the amount of remote
data transfer. The quality of partitioning the microstructure into a 3D array
of images is assessed by q = 1 − (c1 − c3)/(N − 1), so that q = 1 means
c1 = c3, i.e. the lowest possible number of halo cells while q = 0 means that
c1 = N, c2 = c3 = 1, indicating that the number of halo cells is maximised.

Prior work showed that mesh independent CA results are achieved when
each crystal (grain) is represented by at least 105 cells on average [24]. Then,
given the desired microstructure mean grain size, d, the first 3 dimensions
of space are calculated.

As an example consider a simulation of a 12 × 12 × 20 mm volume of
polycrystalline microstructure with d = 2mm on 192 images. Array space

with 2 types of microstructural information is then allocated as:

allocate(space (35 ,70 ,77 ,2) [8,4,*])

where c3 = 6. This allows for simulating 360 grains with q = 0.98, with the
linear resolution of 23.2 cells per mm. The total size of the CA model is 280×
280×462 ≈ 36 million cells. In general it is not possible to represent physical
space with the exact given dimensions, with the same linear resolution along
each coordinate axis, as a discrete CA space. In this example, the volume
of microstructure that is actually simulated is 12.06× 12.06× 19.91 mm.

4.3 Establishing the CA to FE mapping

CGPACK module cgca_m3pfem contains data structures and subroutines
which establish a mapping between the CA space and the FE mesh. A
schematic example of an irregular FE domain is shown in Fig. 3. Some-
times, the CA space will be fully inside the FE model, but in general, the
CA space can be of arbitrary size and orientation with respect to the FE do-
main, depending on what deformation and/or fracture phenomena are to be
studied with it, as shown in Fig. 4. Some FEs will occupy the same physical

7

body (domain)

Figure 3: Schematic of the the FE domain.

multi−scale model

Figure 4: Schematic of a multi-scale CAFE model composed of the FE
domain superimposed with the CA material space.

space as some CA cells. These FEs and cells form a two-way macro/micro
multi-scale CAFE model. However, as indicated in Fig. 4, in general, there
will be cells occupying physical space outside of the body. Such cells do not
participate in a multi-scale CAFE analysis. Likewise, FEs located outside
of the CA space do not participate in the CAFE analysis.

The coarray/MPI CAFE framework is built with an assumption that at
runtime there is always an identical number of MPI processes and coarray
images, and that the first MPI process and the first image exist on the first
processing element (PE), and so on, Fig. 5.

A schematic partition of the CAFE model on 4 PEs is shown in Fig.
6. The boxes show on which PE the corresponding parts of the model are
stored. For example, ‘image 1’ and ‘MPI 1’ parts of the model are stored on
PE 1. However, these FEs do not share physical space with these CA cells.
Instead cells on image 1 share physical space with FEs on PE 3, labelled
‘MPI 3’. This is important because information transfer is required only
between CA and FE which occupy the same physical space. In this example
the MPI part of the model stored on PE 3 will have to communicate with
the coarrays stored on PEs 1 and 3.

8

MPI 1

MPI 4

MPI 2

multi−scale model

MPI 3

image 2

image 4

image 3

image 1

Figure 5: A possible partition of the multi-scale model on 4 PEs (right).

image 2

PE 2PE 1

PE 3 PE 4

MPI 3

MPI 4

MPI 2MPI 1

image 3 image 4

image 1

Figure 6: Schematic of communications between the MPI (FE) and the
coarray (CA) parts of the coarray/MPI (CAFE) hybrid model on 4 PEs.

Communications between the MPI (FE) and the coarray (CA) parts
of the coarray/MPI (CAFE) hybrid model are shown schematically with
arrows in Fig. 6. Solid arrow lines represent comms between different PEs,
while comms within a PE are shown with dashed lines. The imbalance in
the comms pattern is clear. The FE part of the model stored on PE 4 will
not communicate with CA at all. However, the FE part stored on PE 1 will
need to communicate with CA coarrays stored on PEs 2 and 4.

The mapping of FE to CA is established via a private allocatable array
of derived type:

9

type mcen

integer :: image

integer :: elnum

real :: centr (3)

end type mcen

type(mcen), allocatable :: lcentr (:)

based on coordinates of FE centroids calculated by each MPI process (lcentr
stands for local, i.e. non-coarray array of centroids). These coordinates are
stored in a coarray of derived type with a single allocatable array component:

type rca

real , allocatable :: r(:,:)

end type rca

type(rca) :: centroid_tmp [*]

which is allocated as

allocate(centroid_tmp%r(3, nels_pp))

where variable nels_pp, the number of FE stored on this PE, is calculated
by ParaFEM and is made available to CGPACK.

There are two different routines which establish lcentr on each image
from centroid_tmp. Subroutine cgca_pfem_cenc implements an all-to-all
comms pattern, i.e. each image reads centroid_tmp from every image.
Subroutine cgca_pfem_map avoids an all-to-all comms pattern with the use
of large temporary arrays and coarray collectives CO_SUM and CO_MAX, which
are defined by the coarray TS and the latest Fortran standard draft [18, 19].
The two routines differ in their use of remote comms. However, both routines
implement the same algorithm for establishing lcentr: if the centroid of an
FE on any image is within the CA coarray on this image, then this FE
is added to lcentr on this image. Sec. 5.1 details profiling results and
optimisation work done on cgca_pfem_cenc and cgca_pfem_map.

Fig. 7 schematically shows lcentr arrays established on two images P
and Q. In this example, finite element n, stored on image Q, has centroid
coordinates r, which identify a physical location within the CA coarray on
image P. So this element is stored in the lcentr array on image P. Finite
element m, also stored on image Q, has centroid coordinates u, which identify
a physical location within the CA coarray also on image Q. So this element
is stored in the lcentr array on image Q. FEs with centroids outside of the
CA space are not entered in lcentr. lcentr plays a key role in information
transfer between the FE and the CA parts of the multi-scale CAFE model.

4.4 CAFE modelling of brittle fracture in polycrystals

Diverse CAFE fracture models can be constructed from the CGPACK and
the ParaFEM libraries. The simplest case, presented here, uses a combina-

10

PE, image, MPI process P

.

.

m
.

.

.

.

n
.

.

.

elements

image

elnum

centr

. . . Q . . . P . . .

CA

lcentr

. . . m . . . a . . .

. . . u . . . t . . .

u t

PE, image, MPI process Q

.

.

b
.

.

.

.

a
.

.

.

image

elnum

centr

. . . Q . . . P . . .

CA

r

s

lcentr

. . . n . . . b . . .

. . . r . . . s . . .

elements

Figure 7: lcentr arrays on two images P and Q.

tion of linear isotropic elastic FE with cleavage (fully brittle transgranular
fracture mode) CA. Cleavage is the dominant low temperature fracture mode
in body centre cubic (bcc) crystals, such as iron. At each time or strain in-
crement of the FE solver, the stress tensor, t, is passed to the CA, where it
is resolved into normal stresses on {100} and {110} crystal planes - t100, t110
[7, 12]. The localisation (or scatter) algorithm distributes the FE quanti-
ties over CA cells based on existing damage in the microstructure, while
preserving the FE energy [13].

The cleavage model includes 2 parameters - a fracture stress, σF , linked
to the free surface energy, γ, and a characteristic length, L. If t100 ≥ σF
or t110 ≥ σF , then a CA cleavage crack is extended by L per unit of time.
Crack morphology is reduced to a single damage variable, D, by the ho-
mogenisation (or gather) algorithm, and the Young’s modulus of each FE
integration point is reduced according to D, where D = 1 means no damage,
and D = 0 means that the integration point has no load bearing capacity.
To avoid numerical instability the FE stiffness is not reduced to below 10−3

of the original value (corresponding to D = 10−3).

4.4.1 The patch test

Schematics of a 3D static patch test and a quarter FE model are shown in
Fig. 8. The deformed mesh is shown in Fig. 9.

Prediction of scatter is one of the strongest features of a probabilistic
CAFE approach. In each run of the CAFE model a new random microstruc-
ture is simulated which leads to the possibility of a stochastic structural
integrity analysis. Figs. 10 and 11 shows two random realisations of a poly-
crystalline microstructure leading to two unique crack propagation histories,

11

Figure 8: Schematic of the patch test with the quarter model highlighted.

Figure 9: The deformed FE mesh in the patch test, with the contours of
vertical displacement. Colour version online.

and hence to unique macro-crack topologies and associated work of fracture.

4.4.2 A rod under tension

CAFE cleavage simulation in a rod under tension is shown in Figs. 12 to
15. The FE model is a 140mm long mild steel circular cylinder of 10mm
diameter and 100mm gauge length. One end of the cylinder is constrained
and an axial force is applied to the other end. The FE elastic properties are
the Young’s modulus of 200GPa and the Poisson’s ratio of 0.3. Details of
the CA material block were given at the end of Sec. 4.2. The CA block is
positioned centrally on the cylinder, see Fig. 12.

Fig. 12 shows the polycrystalline microstructure layer of the space coar-
ray. The colour of each grain (single crystal) encodes its rotation tensor.

Fig. 13 shows the grain boundaries. Note that all inactive cells, i.e.
CA cells which are outside of the FE domain and do not participate in the
CAFE multi-scale analysis have been removed from this view.

12

Figure 10: Realisation 1 of CAFE showing grain boundaries (top image)
and macro-crack (bottom image). Green cracks are on {110} planes. Yellow
cracks are on {100} planes. Colour version online.

Figure 11: Realisation 2 of CAFE showing grain boundaries (top image)
and macro-crack (bottom image). Green cracks are on {110} planes. Yellow
cracks are on {100} planes. Colour version online.

Fig. 14 shows the macro-crack emerging from linking cracks on preferen-
tial cleavage planes in individual crystals. There are 4 cell fracture states in
this model: -1, -2, -3 and -4. -1 (yellow) denotes crack flanks on {100} planes.
-3 (light blue) denotes crack flanks on {110} planes. Both yellow and light
blue regions are clearly visible in Fig. 14. -2 (dark blue) denotes crack fronts
on {100} planes. -4 (cyan) denotes crack fronts on {110} planes. It is criti-
cally important to appreciate the complexity of the macro-crack prediction.
While it can be approximated as a plane normal to the axis of the bar, this
approximation will ignore a wealth of information, such as grain boundary

13

Figure 12: CAFE modelling of a steel bar under tension showing the CA
microstructure superimposed over the FE mesh of the bar. The mesh is
semi-transparent for clarity. Colour version online.

Figure 13: The CA grain boundaries, with inactive cells removed. Colour
version online.

14

Figure 14: Micro-cracks merging into a macro-crack in a steel bar under
tension. Colour version online.

accommodation fractures and the orientations of preferential cleavage planes
in individual crystals. These details allow for a more accurate prediction of
the work of fracture, one of the key experimental validation parameters.

Cleavage fracture is inherently stochastic [41], meaning that it is in-
correct to compare a single experiment against a single model prediction.
Instead an experimentally measured distribution, e.g. of fracture energy,
must be compared with a predicted distribution [9].

Also, as mentioned in Sec. 4.4.1 (The patch test) it is important to
emphasise the stochastic nature of this model. By repeatedly running the
model, a distribution of fracture parameters such as the work of fracture,
can be predicted. Such distribution can be validated against a correspond-
ing experiment, where such distribution is measured. The CAFE model
is ideally suited for stochastic analysis and predicting distributions of the
output parameters.

Fig. 15 shows the FE mesh at the end of the simulation, when the
macroscopic cleavage crack has propagated across nearly the whole of the
cross section. The contour plot of the axial displacement is superimposed
over the mesh. Note a high displacement gradient across the crack.

It is important to highlight that a multi-scale CAFE model not only
processes information at multiple scales, but also delivers useful predictions
at each scale. In this particular case these are crack topology at the micro-
scale (CA) and deformed mesh, continuum mechanics fields and energies at

15

Figure 15: The deformed FE mesh for a steel bar under tension with Z
displacement contours. Colour version online.

1

10

100

1000

10000

10 100 1000 10000 100000

T
im

e
 i
n

 s
e

co
n

d
s

Number of MPI processes

Actual

Ideal

Figure 16: Strong scaling of ParaFEM (MPI) for a 3D transient flow explicit
analysis on Cray XE6. The problem has 1.25× 106 equations. The symbols
show job times and the line denotes the ideal scaling. Reproduced from [29].

the macro-scale (FE).

16

 1

 10

 100

 1000

 10000

 8 64 512 4096 32768

s
p
e
e
d
-u

p

Cray XE6 cores

job time
ideal

Figure 17: Strong scaling of a CGPACK (coarrays) solidification model with
109 cells.

 1

 10

 100

 1000 10000

s
p
e
e
d
-u

p

Cray XC30 cores

original
optimised

ideal

Figure 18: Strong scaling of a ParaFEM/CGPACK (MPI/coarrays) CAFE
fracture model.

5 Performance

Individually both ParaFEM and CGPACK libraries show nearly ideal scaling
well into tens of thousands of cores, as seen in Figs. 16 and 17. Note that
since both ParaFEM and CGPACK are libraries, scaling analysis makes
sense only in context of specific programs built with these libraries.

A representative scaling of a CAFE multi-scale fracture simulation with
106 FEs and 8×108 CA cells on Cray XC30 is shown in Fig. 18. The original
scaling limit was only about 2,000 cores (80 Cray XC30 nodes), which was
the starting point in the profiling and optimisation of the CAFE framework.

5.1 Cray XC30 profiling and optimisation

A Cray proprietary profiling and tracing tool CrayPat was used on a CAFE
miniapp with 1M FE and 800M CA cells. This miniapp scaled well up to

17

Figure 19: CrayPAT profiling function distribution for a CAFE miniapp
with all-to-all routine cgca gcupda at 7200 cores.

Figure 20: CrayPAT raw profiling data for a CAFE miniapp with all-to-all
routine cgca gcupda at 7200 cores.

2,000 cores from where the scalability dropped dramatically. The initial
profiling study showed limited scalability mainly due to an all-to-all remote
read routine cgca_gcupda, which accounted for over 38% of the total time,
Figs. 19 and 20.

The key fragment from this all-to-all routine is shown below. In this rou-
tine each image reads a coarray value from all other images. Even though
the outer loop starting counter (remote image number) is chosen at ran-
dom to even out communication load, this comms pattern leads to a poor
performance at scale.

18

integer :: gcupd (100 ,3)[*] , rndint , j,&

img , gcupd_local (100 ,3)

real :: rnd

:

call random_number(rnd)

rndint = int(rnd*num_images ())+1

do j=rndint , rndint+num_images ()-1

img = j

if (img .gt. num_images ()) &

img = img - num_images ()

if (img .eq. this_image ()) cycle

:

gcupd_local (:,:) = gcupd (: ,:)[img]

:

end do

An alternative to an all-to-all algorithm is the nearest neighbour algo-
rithm. This has been implemented in subroutine cgca_gcupdn. The key
fragment is shown below.

do i = -1 , 1

do j = -1 , 1

do k = -1 , 1

! Get the coindex set of the neighbour

ncod = mycod + (/ i, j, k /)

:

gcupd_local (:,:) = &

gcupd (: ,:)[ncod(1),ncod(2),ncod (3)]

:

end do

end do

end do

It must be emphasised that the nearest neighbour and all-to-all algo-
rithms do not achieve identical results. In the nearest neighbour case the
information is propagated only one image away from the current image. Mul-
tiple invocations of the nearest neighbour algorithm are required for changes
on any image to reach all images. However, because the nearest neighbour
algorithm is known to scale well, it still outperforms all-to-all at scale, even
if multiple invocations are used. Moreover, for some fracture propagation
problems a single invocation of the nearest neighbour algorithm will suffice,
if crack propagation rates are such that no crack is likely to cross the whole
of CA array on an image in one CA iteration.

The execution of the mentioned miniapp exercising the nearest neighbour
algorithm clearly demonstrates a considerable reduction in the number of
remote reads. This can be seen on Figs. 21 and 22 where the user time is

19

Figure 21: CrayPAT profiling function distribution for a CAFE miniapp
with the nearest neighbour routine cgca gcupdn at 7200 cores.

Figure 22: CrayPAT raw profiling data for a CAFE miniapp with the nearest
neighbour routine cgca gcupdn at 7200 cores.

no longer dominated by remote reads between images with the exception of
subroutine cgca_pfem_cenc.

Subroutine cgca_pfem_cenc also implements an all-to-all communica-
tion pattern. It was possible to replace it with subroutine cgca_pfem_map,
which uses temporary arrays and collectives CO_SUM and CO_MAX.

The key fragment of cgca_pfem_map is shown below. A large tempo-

20

rary array, of length in the order of the maximum number of FE on any
image times the number of images, is required. This approach might prove
problematic at very high core counts due to memory limitations.

integer :: maxfe , pos_start , pos_end , &

ctmpsize

real , allocatable :: tmp(:,:)

! Calculate the max number of FE

! stored on this image

maxfe = size(centroid_tmp%r, dim=2)

ctmpsize = maxfe

! The result is assigned to maxfe

! on *all* images

call co_max(source = maxfe)

allocate(tmp(maxfe*num_images (), 5), &

source =0.0)

! Each image writes its data in a unique

! portion of tmp.

pos_start = (this_image () - 1)* maxfe + 1

pos_end = pos_start + ctmpsize - 1

! Write image number *as real*

tmp(pos_start : pos_end , 1) = &

real(this_image (), kind=4)

! Write element number *as real*

! This works because FE numbers start

! at 1 on all MPI ranks.

tmp(pos_start : pos_end , 2) = &

real ((/ (j, j = 1, ctmpsize) /), kind =4)

! Write centroid coord

tmp(pos_start : pos_end , 3:5) = &

transpose(centroid_tmp%r(1:3 ,1: ctmpsize))

call co_sum(source = tmp)

All these optimisations led to over a 3 fold increase in the scaling limit,
from 2,000 cores to about 7,000 cores, Fig. 18.

5.2 Profiling with TAU on Intel systems

In this section we describe the use of TAU to profile and trace CAFE
miniapps using the Intel Fortran compiler and the Intel MPI library.

TAU [42], is a popular open source set of tools for performance analysis,
particularly on HPC systems. Recently TAU (Tuning and Analysis Utilities)
was shown to support coarray programs [43, 44]. In this work TAU 2.25.2
was used. The University of Bristol BlueCrystal phase 3 system was used
for this work. Each node has a single 16-core 2.6 GHz SandyBridge CPU

21

Figure 23: TAU profile of a CAFE miniapp on 32 cores.

and 64GB RAM. Intel Cluster Studio XE, version 16.0.2, was used with the
Intel MPI library 4.1.0. TAU was configured with

-mpi -c++=mpiicpc -cc=mpiicc -fortran=mpiifort

Intel implementation of coarrays uses remote memory access (RMA)
one-sided communications of MPI-2, where a typical sequence of calls for
a lock/unlock synchronisation is MPI Win create, MPI Win lock, MPI Put,
MPI Get, MPI Win unlock and MPI Win free [45].

Fig. 23 shows the profiling results for a CAFE fracture miniapp on
2 16-core nodes. The load is well balanced across all images. However,
MPI Win unlock dominates the run time and MPI Barrier is in second place.
Only the miniapp program itself, xx14std, the halo exchange routine, cgca hxi,
the MPI FE routine, gather, and the fracture propagation routine, cgca clvgp nocosum,
exceed the threshold of 1% of the total time.

Unfortunately, the conclusion from this profiling work is that coarray
remote comms are not well optimised in Intel Fortran 16. Although Intel
Fortran 17 has since been released, the authors have no access to this version
to assess whether the performance of coarray implementation has improved.

5.3 Cray XC40 energy scaling

A Tier-0 EU level Cray XC40 system Hazel Hen, based at HLRS, Stuttgart,
Germany was used for strong scaling energy studies, Figs. 24 and 25.

22

 1

 10

 100

 1000

 1 10 100 1000

s
p
e
e
d
-u

p

Cray XC40 nodes

10bn
80bn
ideal

Figure 24: Strong scaling of 10bn and 80bn cell CAFE models.

 0.1

 1

 10

 1 10 100

E
n
e
rg

y
,

M
J

Cray XC40 nodes

10bn cells
80bn cells

Figure 25: Strong scaling of the total consumed energy for 10bn and 80bn
cell CAFE jobs.

The CAFE miniapps revealed a bug in Cray Distributed Shared Memory
Application (DMAPP) hardware dependent library [46], which manifested
itself via coarray remote call errors at 300 nodes and beyond. Accordingly
scaling was explored only up to 300 nodes on this system. The authors
have been informed by Cray via HLRS that the fix is coming in Cray Linux
Environment (CLE) version 6 (the current version is 5.2).

Figs. 24 and 25 show that the total energy of computation grows expo-
nentially with increasing number of cores for these CAFE miniapps, even
for a relatively good scaling, such as shown by a 10 billion cell CAFE model.
Only for a truly linear scaling is is possible to keep the total energy of com-

23

putation constant, as seen in first 2 data points for a 80 billion cell CAFE
model. The importance of reducing, or at least not increasing, HPC energy
demands has been growing in recent years. Lately the aim of HPC has be-
come not just to achieve the best scaling, but the best speed-up to energy
ratio. With this in mind, data in Figs. 24 and 25 leads to the conclusion
that the scaling limits are about 100 nodes for the 80 billion cell CAFE
model, and about 10 nodes for the 10 billion model.

5.4 CAFE IO

A typical volume of microstructure in a CAFE approach might include 106

grains or 1011 cells. With 4-byte integers to store cell states, each layer of
space coarray will take ≈ 373GB, i.e. 745GB for both fracture and mi-
crostructure datasets. Multi-step CAFE analyses, e.g. progressive fracture
propagation through microstructure, demand that space coarray is written
to disk at regular intervals. It is clear that efficient coarray IO is required
for good scaling.

The Fortran standard does not include parallel IO. However, approaches
to achieving high IO performance in MPI programs can be readily applied
to coarrays [47].

A single writer/single file serial model is easiest to implement, but has
the lowest performance, about 100MB/s on the Cray XE6. In contrast, a
multiple writers/single file parallel model has the highest performance using
MPI/IO. With some tuning of the Lustre file system, in particular lfs stripe
size and stripe count settings, rates of 2.3 GB/s have been achieved on Cray
XE6, raising up to 14 GB/s on Cray XC30 [47]. In all cases the CA space

coarray is written out as a binary dataset with no metadata. Knowledge
of the array extents and of linear spatial resolution is required for post-
processing.

NetCDF and HDF5 IO writers are beneficial to direct MPI/IO because
the metadata is written either together with the data, as in the NetCDF
case, or is encoded in a simple XDMF wrapper, as in the HDF5 case. Both
NetCDF and HDF5 have been implemented in CGPACK. However, as Fig.
26 shows, at present maximum NetCDF IO rates are only about 1.2 GB/s
[48], which is significantly lower than direct use of MPI/IO.

5.5 Synchronising a coarray library

The CGPACK library consists of a number of modules and submodules,
with serial and parallel subroutines. A variety of programs can be built,
using as many or as few CGPACK library routines as required. The design
of the library makes only very basic assumptions on the order of calls to
CGPACK routines in a program, e.g. fracture routines must be called after
routines establishing microstructure. An error condition is flagged if the

24

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 4 8 16 32 64

IO
 r

a
te

,
G

B
/s

lfs stripe size, MB

Cray XC30, 20 nodes, lfs, NetCDF IO rates

count 1
count 4
count 8
count 16
count 20
count 32
count 40
count 56

Figure 26: CAFE IO rates showing the influence of the Lustre file system
stripe size and stripe count settings.

order of these routines is reversed. In most other cases the logic of the order
of the invocation of CGPACK routines is left to the user.

An immediate consequence of such design is that inter image synchroni-
sation becomes a hard decision. The Fortran standard imposes very strict
segment ordering rules to ensure data integrity and to prevent deadlocks
[17].

Synchronisation requirements differ for each individual CGPACK rou-
tine. For example, a halo exchange algorithm logically maps best onto SYNC

IMAGES image control statement. Assuming a 3D grid of images, [:,:,:],
see Sec. 4.2, each image has to synchronise only with its 26 neighbour-
ing images, i.e. image with the coindex set [a,b,c] has to synchronise
with images from [a-1,b-1,c-1] to [a+1,b+1,c+1]. However, the library
writer has no way to predict what routines will precede or succeed the halo
exchange routine. In practice this often means that the only safe image
control statement is SYNC ALL, a global barrier. A fragment of a typical
coarray CAFE program might look like this:

call cgca_nr(space) ! sync all inside

call cgca_rt(grt) ! sync all inside

call cgca_sld(space) ! sync all inside

call cgca_igb(space)

sync all

call cgca_hxi(space)

sync all

call cgca_gbs(space)

sync all

call cgca_hxi(space)

25

sync all

sync all

call cgca_gcu(space) ! local routine

! no sync needed

Note that some CGPACK routines include image control statements in
the beginning and/or the end, e.g. cgca_sld, the solidification routine and
cgca_nr, the nucleation routine. It does not make sense to start cgca_sld
on any image until cgca_nr has finished on all images. In such cases the
responsibility for arranging sufficient synchronisation has been taken away
from the end user. However, in other cases, the user is likely to deploy SYNC

ALL to be safe, as shown above. The use of a more flexible synchronisation,
e.g. SYNC IMAGES requires the user to have a very good understanding of
the library routines used in their program. We are working on a dedicated
synchronisation layer, which keeps track to updates of all coarray data ob-
jects on all images and uses the minimum required synchronisation for data
integrity. When implemented, this will move all or most of the responsibility
for code synchronisation from end user to the CGPACK library itself.

While excessive use of SYNC ALL might lead to over synchronisation, and
hence to poor scaling, our prior profiling analysis on Cray XC30 concluded
that the current ParaFEM/CGPACK (MPI/coarrays) scaling limit of 7,000
cores, see Fig. 18, is not related to this [40].

ParaFEM synchronisation properties are very different, because most of
its routines use 2-way message passing MPI calls. In this regard it is very
fortunate that in a ParaFEM/CGPACK CAFE program the calls to each
library do not alternate often, - there is typically a large chunk of code
made of ParaFEM calls, then SYNC ALL, then a large chunk of code made
of CGPACK calls, etc. A fragment of a CAFE fracture program is shown
below.

call cgca_pfem_salloc(nels_pp , nip , nst)

sync all

!end CGPACK part

!start ParaFEM part

CALL rearrange(rest)

elements_0: DO iel=1,nels_pp

CALL find_g3(g_num_pp(:,iel), &

g_g_pp(:,iel), rest)

END DO elements_0

5.6 Opportunities for thread parallelisation

Many CA routines contain triple nested loops over all cells on an image. An
example below is taken from cgca_clvgp, the cleavage propagation routine.
Each iteration of the main loop all cells in the CA on an image are processed.

26

main: do iter = 1,N

do x3 = lbr(3), ubr (3)

do x2 = lbr(2), ubr (2)

do x1 = lbr(1), ubr (1)

live: if ...

! scan only through undamaged cells

call cgca_clvgn(clvgflag)

if (clvgflag) call sub(space)

end if live

end do

end do

end do

call co_sum(clvgglob)

sync all

call cgca_hxi(space)

sync all

call cgca_dacf(space)

end do main

Such nested loops might present good opportunities for thread paral-
lelisation with either OpenMP or OpenACC (e.g. on GPUs or Xeon Phi),
although the use of underpopulated nodes might be required. Fortran 2008
new intrinsic DO CONCURRENT should also be explored, although at present
its performance portability is inferior to OpenMP. Recently, ParaFEM has
been ported to Xeon Phi [49]. In order to make best use of the Xeon Phi
architecture, the code needed some rewriting to use a mixed OpenMP/MPI
parallelisation strategy. On standard x86 multicore processors, the addition
of OpenMP provides no benefit. However, on the Xeon Phi, OpenMP us-
ing 4 threads per core provides an additional 4-fold speed-up in run times.
Porting of CGPACK to Xeon Phi is planned for the future.

6 Conclusions

Coarrays are a new exciting feature of standard Fortran. It was shown in this
work that coarrays are a natural data representation model for 3D cellular
automata framework. The use of an integer allocatable array coarray with
4 dimensions and 3 codimensions in CGPACK for a 3D CA polycrystalline
microstructure simulation was successful. It was shown that solidification
and fracture of a polycrystalline microstructure can be modelled efficiently
on HPC systems. Solidification models can scale at least up to 32k cores
on Cray systems. A multi-scale continuum/microstructure model was con-
structed by linking together cellular automata coarray library CGPACK
with MPI finite element library ParaFEM. Considerable attention has been
given to establishing a robust FE to CA mapping data structures and pro-

27

cedures, resulting in a concurrent hierarchical two-way multi-scale CAFE
model. Coarrays of derived type with allocatable components were found to
be very useful for maintaining dynamic data structures which link the MPI
and the coarray parts of the framework. The multi-scale CAFE framework
allows simulating the emergence of macro-cracks from merging cracks on
preferentially oriented crystallographic planes in individual grains. A pro-
gressive cleavage fracture propagation in a cylindrical ferritic steel specimen
was shown as a simple CAFE application, which was scaled up to 7k cores
on Cray XC30 after replacing all-to-all comms patters with nearest neigh-
bour algorithms. A diverse range of other CAFE programs can be created
by using ParaFEM with CGPACK. This work shows that interfacing MPI
and coarrays is achievable in practice. This opens many possibilities for
applications in other areas of science and engineering. In addition, because
both ParaFEM and CGPACK are distributed under BSD license, the two
libraries can be used by researchers from other fields, e.g. biomechanics for
study of bone growth, fracture and regeneration.

Acknowledgements

The authors want to acknowledge generous funding for this work from the
following organisations: (1) embedded CSE programme of the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk); (2) the
computational facilities of the Advanced Computing Research Centre, The
University of Bristol, UK (http://www.bris.ac.uk/acrc); (3) PRACE for
awarding us access to resource Hazel Hen based in Germany at HLRS,
Stuttgart; (4) Software Sustainability Institute, UK (https://www.software.
ac.uk).

References

[1] W. A. Curtin and R. E. Miller. Atomistic/continuum coupling in com-
putational materials science. Model. Simul. Mater. Sci. Eng., 11:R33–
R68, 2003.

[2] M. Xu and T. Belytschko. Conservation properties of the bridging
domain method for coupled molecular/ continuum dynamics. Int. J.
Numer. Meth. Eng., 76:278–294, 2008.

[3] M. Wallin, W. A. Curtin, M. Ristinmaa, and A. Needleman. Multi-
scale plasticity modeling: Coupled discrete dislocation and continuum
crystal plasticity. J. Mech. Phys. Solids, 56:3167–3180, 2008.

28

[4] G. Guillemot, Ch.-A. Gandin, and M. Bellet. Interaction between single
grain solidification and macro segregation: Application of a cellular
automaton - finite element model. J. Crystal Growth, 303:58–68, 2007.

[5] C. Zheng and D. Raabe. Interaction between recrystallization and phase
transformation during intercritical annealing in a cold-rolled dual-phase
steel: A cellular automaton model. Acta Materialia, 61:5504–5517,
2013.

[6] L. Saucedo-Mora and T. J. Marrow. FEMME: A multi-scale Finite
Element Microstructure MEshfree fracture model for quasi-brittle ma-
terials with complex microstructures. Eng. Fract. Mech., 147:355–372,
2015.

[7] A. Shterenlikht and L. Margetts. Three-dimensional cellular automata
modelling of cleavage propagation across crystal boundaries in poly-
crystalline micro- structures. Proc. Roy. Soc. A, 471:20150039, 2015.

[8] H. Talebi, M. Silani, S. P. A. Bordas, P. Kerfriden, and T. Rabczuk.
A computational library for multiscale modeling of material failure.
Comput. Mech., 53:10471071, 2014.

[9] A. Shterenlikht and I. C. Howard. The CAFE model of fracture – appli-
cation to a TMCR steel. Fatigue Fract. Eng. Mater. Struct., 29:770–787,
2006.

[10] S. Das, A. Shterenlikht, I. C. Howard, and E. J. Palmiere. A general
method for coupling microstructural response with structural perfor-
mance. Proc. Roy. Soc. A, 462:2085–2096, 2006.

[11] S. J. Wu, C. L. Davis, A. Shterenlikht, and I. C. Howard. Modeling
the ductile-brittle transition behavior in thermomechanically contolled
rolled steels. Met. Mater. Trans. A, 36:989–997, 2005.

[12] A. Shterenlikht, S. Margetts, L. McDonald, and N. K. Bourne. To-
wards mechanism-based simulation of impact damage using exascale
computing. AIP Conference Proceedings, 1793:080009, 2017.

[13] V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens. An
approach to micro-macro modeling of heterogeneous materials. Comp.
Mech., 27:37–48, 2001.

[14] E. N. Millán, C. S. Bederian, M. F. Piccoli, C. G. Garino, and E. M.
Bringa. Performance analysis of cellular automata HPC implementa-
tions. Computers and Electrical Engineering, 48:12–24, 2015.

[15] A. Shterenlikht, L. Margetts, and L. Cebamanos. Fortran coarray/MPI
multi-scale CAFE for fracture in heterogeneous materials. In P. Iványi,

29

B. H. V. Topping, and G. Várady, editors, Proceedings of the Fifth In-
ternational Conference on Parallel, Distributed, Grid and Cloud Com-
puting for Engineering. Civil-Comp Press, Stirlingshire, UK, Paper 40,
2017. doi:10.4203/ccp.111.40.

[16] M. Metcalf, J. Reid, and M. Cohen. Modern Fortran Explained. Oxford,
2011.

[17] ISO/IEC 1539-1:2010. Fortran – Part 1: Base language, International
Standard. 2010.

[18] ISO/IEC JTC1/SC22/WG5 N2074. TS 18508 Additional Parallel Fea-
tures in Fortran. 2015.

[19] ISO/IEC JTC1/SC22/WG5 N2137. Fortran 2015 Committee Draft.
2017.

[20] G. Mozdzynski, M. Hamrud, and N. Wedi. A partitioned global address
space implementation of the European centre for medium range weather
forecasts integrated forecasting system. Int. J. High Perf. Comp. Appl.,
29:261–273, 2015.

[21] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, and A. Koniges.
Multithreaded address space communication techniques for gyrokinetic
fusion applications on ultra-scale platforms. In Supercomputing 2011,
USA, 2011.

[22] D. K. Sun, S. Y. Pan, Q. Y. Han, and B. D. Sun. Numerical simulation
of dendritic growth in directional solidification of binary alloys using a
lattice boltzmann scheme. INTERNATIONAL JOURNAL OF HEAT
AND MASS TRANSFER, 103:821–831, 2016.

[23] M. Eshraghi, S. D. Felicelli, and B. Jelinek. Three dimensional simu-
lation of solutal dendrite growth using lattice boltzmann and cellular
automaton methods. JOURNAL OF CRYSTAL GROWTH, 354:129–
134, 2012.

[24] J. Phillips, A. Shterenlikht, and M. J. Pavier. Cellular automata mod-
elling of nano-crystalline instability. In Proc. 20th UK ACME Conf.,
Manchester, UK, 2012.

[25] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty. Fortran
2008 coarrays. ACM Fortran Forum, 34:10–30, 2015.

[26] A. Shterenlikht. Fortran coarray library for 3D cellular automata mi-
crostructure simulation. In Proc. 7th PGAS Conf., Edinburgh, UK,
pages 16–24, 2014.

30

[27] L. Margetts. Parallel Finite Element Analysis. PhD thesis, University
of Manchester, 2002.

[28] I. M. Smith. Programming the Finite Element Method. Wiley, 1982.

[29] I. M. Smith, D. V. Griffiths, and L. Margetts. Programming the Finite
Element Method. Wiley, 5ed, 2014.

[30] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich. Improving performance via mini-applications.
Technical Report SAND2009-5574, Sandia National Laboratories, Al-
buquerque, New Mexico 87185 and Livermore, California 94550, 2009.

[31] I. M. Smith and L. Margetts. The convergence variability of parallel
iterative solvers. Eng. Computations, 23:154–165, 2006.

[32] I. M. Smith and L. Margetts. Portable parallel processing for nonlinear
problems. In Proc. VII Int. Conf. Computational Plasticity, Barcelona,
Spain, 2003.

[33] L. Margetts, I. M. Smith, and J. M. Leng. Parallel 3d finite element
analysis of coupled problems. In Proc. III European Conf. Comp. Me-
chanics in Solids, Structures and Coupled Problems in Engineering,
Lisbon, Portugal, 2006.

[34] Ll. M. Evans, L. Margetts, V. Casalegno, L. M. Lever, J. Bushell,
T. Lowe, A. Wallwork, P. Young, A. Lindemann, M. Schmidt, and
P. M. Mummery. Transient thermal finite element analysis of CFC-
Cu ITER monoblock using X-ray tomography data. Fusion Eng. Des.,
100:100–111, 2015.

[35] J. D. Arregui-Mena, L. Margetts, D. V. Griffiths, L. Lever, G. Hall, and
P. M. Mummery. Spatial variability in the coefficient of thermal expan-
sion induces pre-service stresses in computer models of virgin gilsocar-
bon bricks. J. Nuclear Mater., 465:793–804, 2015.

[36] F. Levrero-Florencio, L. Margetts, E. Sales, S. Xie, K. Manda, and
P. Pankaj. Evaluating the macroscopic yield behaviour of trabecular
bone using a nonlinear homogenisation approach. J. Mech. Behavior
Biomed. Mater., 61:384–96, 2016.

[37] S. D. Rawson, L. Margetts, J. K. F. Wong, and S. H. Cartmell. Sutured
tendon repair; a multi-scale finite element model. Biomech. Model.
Mechanobiol., 14:123–133, 2015.

[38] L. Margetts, I. M. Smith, L. M. Lever, and D. V. Griffiths. Paral-
lel processing of excavation in soils with randomly generated material

31

properties. In Proc. 8th European Conf. Numer. Methods in Geotech-
nical Engineering, Delft, Netherlands, pages 265–270, 2014.

[39] L. Margetts, J. M. Leng, I. M. Smith, and P. L. Manning. Parallel
three dimensional analysis of dinosaur trackway formation. In Proc. 6th
European Conf. Numer. Methods in Geotechnical Engineering, Graz,
Austria, pages 743–749, 2006.

[40] L. Cebamanos, A. Shterenlikht, D. Arregui-Mena, and L. Margetts.
Scaling hybid coarray/mpi miniapps on archer. In Cray User Group
2016 meeting (CUG2016), London, 8-12-MAY-2016, 2016.

[41] T. Lin, A. G. Evans, and R. O. Ritchie. Stochastic modeling of the in-
dependent roles of particle size and grain size in transgranular cleavage
fracture. METALLURGICAL TRANSACTIONS A, 18:641–51, 1987.

[42] S. Shende and A. D. Malony. The TAU parallel performance system.
Int. J. High Perf. Comp. Appl., 20:287–331, 2006.

[43] H. Radhakrishnan, D. W. I. Rouson, K. Morris, S. Shende, and S. C.
Kassinos. Using coarrays to parallelize legacy Fortran applications:
Strategy and case study. Sci. Prog., 2015:904983, 2015.

[44] M. Haveraaen, K. Morris, D. Rouson, H. Radhakrishnan, and C. Car-
son. High-performance design patterns for modern Fortran. Sci. Prog.,
2015:942059, 2015.

[45] V. Tipparaju, W. Gropp, H. Ritzdorf, R. Thakur, and J. L. Träff.
Investigating high performance RMA interfaces for the MPI-3 standard.
In Proc. 2009 Int. Conf. Parallel Processing, 2009.

[46] Cray Inc. XC Series GNI and DMAPP API User Guide (CLE
6.0.UP01) S-2446, 2016.

[47] D. Henty, A. Jackson, C. Moulinec, and V. Szeremi. Performance of
Parallel IO on ARCHER, version 1.1, 2015. http://archer.ac.uk.

[48] A. Shterenlikht, L. Margetts, L. Cebamanos, and J. D. Arregui-Mena.
Multi-scale CAFE framework for simulating fracture in heterogeneous
materials implemented in Fortran coarrays and MPI . In PGAS Appli-
cation Workshop (PAW), Supercomputing 2016, USA , 2016.

[49] L. Margetts, J. D. Arregui Mena, T. Hewitt, and L. Mason. Parallel
finite element analysis using the intel xeon phi. In Proc. Emerging
Technology Conf. (EMiT 2016), ISBN 978-0-9933426-3-9, 2016.

32

