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Abstract—Coarrays are a native Fortran means for SPMD
parallel programming, implementing a single-sided communi-
cations model. Coarray Fortran belongs to the PGAS class
of parallel languages. Relatively few tools support profiling
of coarray programs. Profiling and tracing of pure coarray
programs and mixed coarray+MPI miniapps was done in this
work on 2 platforms. TAU (Tuning and Analysis Utilities) toolkit
2.25.2 was used with the Intel compiler 16.0.2 and the Intel MPI
libraries 4.1.0 on Red Hat Enterprise Linux 6 cluster. CrayPAT
(Performance Analysis Tool) was used on Cray XC30 system
with CCE (Cray Compiler Environment) 8.4.1. Four coarray
programs, of progressively increasing complexity, are studied.
TAU profiling results on 32 cores and CrayPAT profiling data on
7k cores show that our hybrid MPI+coarray codes are relatively
well balanced. We show that the Intel compiler maps coarray
remote operations and synchronisation routines onto MPI-2 RMA
calls. For the Intel implementation we show that in iterative
programs, where remote data access and image synchronisation
are performed each iteration, performance is heavily dominated
by MPI_Win_unlock routine. These results might open a
possibility for Intel developers to improve and optimise their MPI
based coarray implementation. Cray implementation of coarrays
uses their proprietary communications library DMAPP. CrayPAT
results for an MPI+coarray program on 7k cores show that
runtime is heavily dominated by the user routines, with MPI
routines in the second place. DMAPP coarray calls consume an
insignificant fraction of runtime.

I. INTRODUCTION

Coarrays are a native Fortran means for SPMD parallel
programming [1]. Although coarrays (or co-arrrays, Co-Array
Fortran (CAF), as they were originally known) have been
used, particularly on Cray systems, as an extension, for
nearly 20 years [2], they became part of the Fortran standard
only in 2010 [3]. Coarray capabilities will be substantially
expanded in the Fortran 2015 standard [4]. Coarrays offer
simple syntax and portability for SPMD standard conforming
Fortran programs. Coarrays can be added gradually to existing
Fortran projects and can co-exist with other popular parallel
technologies, primarily OpenMP and MPI [5]. At runtime a
coarray program is replicated a certain number of times, and
each copy of the executable (called an image) is executing
asynchronously. The standard [3] uses very strict image or-
dering and synchronisation rules to ensure coarray integrity.
As a result, a standard conforming coarray program should
not deadlock or suffer from races.

However, coarray performance can vary significantly. This is
partly because coarrays represent a very high level of abstrac-
tion, and Fortran compilers can use different transport libraries
to map coarrays data and communications to hardware. Cray
systems use DMAPP, the Intel implementation uses MPI and
the OpenCoarrays implementation is designed to support MPI
and GASNet [6].

In our previous work we successfully used proprietary Cray-
PAT tools to optimise performance of MPI+coarray miniapps
on Cray systems [7]. Here we show the latest load balancing,
profiling and tracing results for MPI+coarray miniapps on
ARCHER, Cray XC30, the UK national supercomputer.

Recently TAU (Tuning and Analysis Utilities) was shown to
support coarray programs [8], [9]. In this work we use TAU to
profile and trace several coarray and MPI+coarray programs
using the Intel Fortran compiler and the Intel MPI library.

II. PROFILING AND TRACING WITH TAU

TAU1 [10], is a popular open source set of tools for
performance analysis, particularly on HPC systems. In this
work TAU 2.25.2 was used.

TAU is often used together with the Program Database
Toolkit (PDT), 2, which is a framework for analysing source
code. However, PDT 3.22 does not yet support coarrays. Hence
compiler based instrumentation was used in this work, which
is enabled with TAU flag -optCompInst.

TAU can internally use external packages such as PAPI3 and
Score-P4. PAPI provides TAU access to low-level hardware
performance counters to track events such as instructions
executed, or level 1 and 2 data cache misses. Score-P provides
an efficient implementation of callpath profiling and event
tracing. TAU can generate profiles in the CUBEX format
using Score-P’s measurement substrate and use the CUBE or
ParaProf tools to view the profiles. Using Score-P, TAU can
also generate native OTF2 traces that may be visualized in the
Vampir5 commercial trace visualization tool. To use Score-P,
TAU can be configured with the -scorep=download flag.

1https://www.cs.uoregon.edu/research/tau
2https://www.cs.uoregon.edu/research/pdt
3http://icl.cs.utk.edu/papi
4http://www.score-p.org
5http://www.vampir.eu
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Fig. 1. Calculating � on 2 16-core nodes - scaling.

In this paper, we use TAU’s native measurement library for
profiling and tracing.

The University of Bristol BlueCrystal phase 3 system was
used for this work6. Each node has a single 16-core 2.6 GHz
SandyBridge CPU and 64GB RAM. Intel Cluster Studio XE,
version 16.0.2, was used which uses the Intel MPI library
4.1.0. TAU was configured with

-mpi -c++=mpiicpc -cc=mpiicc \
-fortran=mpiifort

Exclusive TAU times are measured and reported in all cases.
Jumpshot-4, developed by the Argonne National Lab

(ANL)7, was used to view TAU traces.

A. Case studies

1) Calculation of � using Gregory-Leibniz series: This
example is taken from the University of Bristol coarrays
course8, folder examples/prof/tau/5pi.
� can be calculated using the Gregory-Leibniz as follows:

� = 4

1X

n=1

(�1)n�1

2n� 1
(1)

This is a classical parallel problem - all workers calculate their
own partial sums in parallel. The total sum is calculated via a
collective routine or by a master process. The series limit was
set arbitrarily at 235. The key fragment is shown below.

real :: pi[*]
do i = this_image(), 2**35, num_images()
pi = pi + (-1)**(i+1) / real( 2*i-1 )

end do
sync all ! all images synchronise here
if ( this_image() .eq. 1 ) then

do i = 2, num_images()
pi = pi + pi[i]

end do
pi = pi * 4.0

end if

6http://www.acrc.bris.ac.uk
7http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.

htm
8http://coarrays.sourceforge.net

Fig. 2. Calculating � with 32 images - profiling. TAU ‘node’ means MPI
process.

Fig. 3. Calculating � - single image profile.

Coarray collectives are not yet in the Fortran standard. They
are described in [4] and will become a part of Fortran 2015
standard. Cray and OpenCoarrays already support coarray
collectives. Intel Fortran 16 does not. Hence image 1 is
calculating the total sum by pulling partial sums from all other
images with pi = pi + pi[i].

Fig. 1 shows scaling of this code on two nodes ( 2�16 = 32
cores ) with the Intel -fast optimisation flag. In all profiling
and scaling runs we used a single MPI process or a single
coarray image per core. So in Fig. 1 a maximum of 32 images
was used on 32 cores.

Fig. 2 shows an even spread of load over all nodes, sorted
by exclusive time. Note that TAU shows MPI processes
starting from 0 (nodes in TAU terminology), whereas Fortran
images always start from 1. So MPI process n corresponds



Fig. 4. Calculating � with 32 images - a trace fragment.
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Fig. 5. Scaling of the Laplacian code coback1-tau on 2 16-core nodes.

to image n + 1. MPI_Init (green) and MPI_Finalize
(purple) times differ between MPI processes 0-15 and 16-31,
highlighting the boundary between the physical computers in
the cluster. Time spent in other MPI routines is negligible.

Fig. 3 shows exclusive time profile on image 14. It is clear
that Intel implementation of coarrays uses remote memory
access (RMA) one-sided communications of MPI-2, where
a typical sequence of calls for a lock/unlock synchronisa-
tion is MPI_Win_create, MPI_Win_lock, MPI_Put,
MPI_Get, MPI_Win_unlock and MPI_Win_free [11].
Note that Fig. 3 shows that of these calls, nearly 90% of time
is spent in MPI_Win_unlock. A fragment of the trace for
this program, taken after sync all, is shown in Fig. 4. It
highlights the dominance of MPI_Win_unlock calls.

2) A Laplacian solver: This example is taken from
the University of Bristol coarrays course9, folder
examples/prof/tau/9laplace.

Program coback1-tau.f90 iteratively reconstructs a 2D
array p from previously calculated 2D edge array edge. Halo
exchange and sync images synchronisation is used every
iteration. The key fragment is show below.

img = this_image() ; nimgs = num_images()
outer: do iter = 1, niter

9http://coarrays.sourceforge.net

Fig. 6. Profile of coback1-tau on 10 images.

Fig. 7. Profile of coback1-tau on a single image.

if (img.ne.1) op(:,0)=op(:,size2)[img-1]
if (img .ne. nimgs) op(:, size2+1) = &

op(:, 1)[img+1]
do j = 1, size2
do i = 1, width
p(i,j) = &
0.25 * (op(i-1,j) + op(i+1,j) + &

op(i,j-1) + op(i,j+1) - edge(i,j))
end do
end do
op = p
if ( img .ne. 1 ) sync images(img-1)
if ( img .ne. nimgs ) sync images(img+1)
end do outer

Fig. 5 shows scaling of program coback1-tau on two
16-core nodes. Best performance is achieved on 10 images.
Profiling results with 10 images are shown in Figs. 6 and 7.
MPI_Win_unlock now dominates the run time, and the

program itself, cobacktau, accounts for less than half of
time. Significant load imbalance is seen in MPI_Recv.

Fig. 8 shows the data transfer pattern and dominance of
MPI_Win_unlock calls in the program at the exit from
the outer loop. Note also an emerging pattern in remote
calls, when no pattern is present in the source code. The
pair-wise synchronisation between the neighbouring images
in the source code can be done in any order, i.e. staring at any
arbitrary image. It seems the implementation chose to process
all images in order, starting from image 1.



Fig. 8. A fragment of the trace of coback1-tau on 10 images.

Fig. 9. Profile of CGPACK program testABW, showing only functions
accounting for more than 1% of total exclusive time.

3) Cellular automata microstructure simulation code:
CGPACK,10 is a BSD licensed Fortran coarray library for
microstructure simulation [12], [13]. It uses a cellular automata
approach, where a 3D space is represented as a structured
grid of cells. Cell states are updated iteratively. At every
iteration the state of each cell is determined by the states of
its neighbouring cells and, possibly, by a superimposed field,
such as temperature or strain.

The CGPACK distribution includes a number of test pro-
grams, e.g. tests/testABW.f90, studied here. This pro-
gram simulates formation and cleavage fracture of polycrys-
talline microstructure. It calls multiple routines to manipulate
an allocatable integer coarray:

integer,allocatable :: space(:,:,:,:)[:,:,:]

10http://cgpack.sourceforge.net

Fig. 10. Profile of testABW on a single image.

Fig. 11. A fragment of trace of testABW.

The -O2 optimisation flag was used. Figs. 9 and 10
show that the time is dominated by MPI_Win_unlock
even more than in the previous examples. MPI_Barrier
is in the second place. Only 2 CGPACK routines, the halo
exchange, cgca_hxi, and the cleavage fracture propagation,
cgca_clvgp_nocosum, exceed the threshold of 1% of the
total time. Fig. 9 also shows good load balance in the user
routines and some imbalance in MPI_Win_unlock.

Fig. 11 shows the trace of testABW, while the pro-
gram is inside the halo exchange routine cgca_hxi.
MPI_Win_unlock is run on all images except 17, which
is in MPI_Barrier. The source code points to no obvious
explanation of why only a single image would call a global
barrier at this point.

4) Multiscale coarray+MPI fracture model: ParaFEM,11 is
a BSD licensed12 highly scalable Fortran MPI finite element
library [14]. It has recently been used in nuclear fusion
research [15] and biomechanics [16].

By linking ParaFEM with CGPACK a multi-scale cellular
automata finite element (CAFE) framework was created [12].
In the CAFE approach the structural scale is represented with
FE and material microstructure evolution is modelled with
CA. A concurrent two-way information transfer is established
between the FE and the CA layers [17], [18].

ParaFEM includes several CAFE miniapps, as a set of
developer programs, under src/programs/dev/xx14. In
this work we profile xx14std.f90. Both ParaFEM and

11http://parafem.org.uk
12https://sourceforge.net/projects/parafem



Fig. 12. 3D profiling bar chart of program xx14std, coarray+MPI, on 2
nodes with 32 images.

Fig. 13. Profile of program xx14std, coarray+MPI, on 2 nodes with 32
images.

CGPACK libraries were instrumented with TAU. The -O2
optimisation flag was used. Profiling was done on 2 16-core
nodes with 32 images.

Figs. 12-14 show the profiling results for xx14std.
The observations are consistent with the previous two
examples. The load is well balanced across all images.
However, MPI_Win_unlock dominates the run time and
MPI_Barrier is in the second place. Only the program

Fig. 14. Profile of program xx14std, coarray+MPI, on a single image.

Fig. 15. A fragment of the trace of coarray+MPI program xx14std, inside
CGPACK routine cgca_sld.

itself, xx14std, the halo exchange routine, cgca_hxi,
the MPI FE routine, gather, and the fracture propagation
routine, cgca_clvgp_nocosum, exceed the threshold of
1% of the total time.

Note that the Intel coarray implementation includes task
caflaunch, which is assigned a rank 0 (orange bar in Fig.
13). In TAU 2.25.2, when compiler instrumentation is used, as
in the this work, caflaunch is instrumented too. This creates
a problem that both the caflaunch thread and the coarray
program thread write to the profiling file on MPI process 0.
Because caflaunch persists until the program exits, this
process overwrites all program data on MPI process 0, so only
caflaunch is seemingly present there, as seen in Fig. 13.
The TAU team has created a fix which permits MPI ranks
that have called MPI_Init to write profiles and traces to
disk. This prevents the caf launcher task from interfering with
the rest of the MPI ranks. This is key to supporting coarrays
in performance evaluation tools.

Traces of xx14std show clear differences between those
MPI calls which are included directly in the ParaFEM library,
and the MPI calls into which the Intel compiler translated the
CGPACK coarray remote operations. Fig. 15 shows a typical
fragment of the trace of xx14std, where CGPACK coarray
routines are executed. No communication pattern or structure
can be seen. MPI_Win_unlock and MPI_Barrier are
executed from CGPACK halo exchange routine cgca_hxi,
which is called from cgca_sld. In contrast, Fig. 16 shows



Fig. 16. A fragment of the trace of program xx14std, showing MPI routines included directly in the ParaFEM library.
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Fig. 17. Runtime and scaling of xx14, coarray+MPI, up to 15,000 cores on
a Cray XC30.

a very well structured MPI communication pattern translated
directly from the MPI calls in the ParaFEM library.

III. CRAY SYSTEMS

The Cray Performance Analysis Tool (CrayPAT) is a power-
ful framework for analysing parallel applications’ performance
on Cray supercomputers. It can provide very detailed informa-
tion on the timing and performance of individual application
procedures, directly incorporating information from the raw
hardware performance counters available on processors.

CrayPAT has two modes of operation,- sampling and trac-
ing. Sampling takes regular snapshots of the application,
recording which routine the application was in. This can
provide a good overview of the important routines in an
application without interfering with the run time, however it

has the potential to miss smaller functions and cannot provide
the more detailed information.

Tracing involves instrumenting each subroutine with ad-
ditional instructions that can record this extra information
when they enter and exit. This approach ensures full capture
of information, but can result in high overheads, especially
where individual functions and subroutines are very small.
Furthermore, it can generate very large amounts of data which
become difficult to process and visualise.

CrayPAT supports Fortran, C, C++, UPC, MPI, Coarray
Fortran, OpenMP, Pthreads and SHMEM.

The general workflow to profile an application with Cray-
PAT involves 4 steps:

1) Compilation and normal execution of the application
2) Sampling (or tracing) using pat_build
3) Execution of the new generated executable
4) Visualization of profiling report using pat_report

The ParaFEM + CGPACK miniapps have been profiled and
traced with CrayPAT on a Cray XC30 system (ARCHER).
In this work we present results of profiling xx14.f90. This
miniapp uses coarray collectives CO_SUM and CO_MAX, which
are described in TS18508 [4] and will be included in the next
revision of the Fortran standard, Fortran 2015. At the time of
writing, coarray collectives are available on Cray systems as
extension to the standard.

Apart from the use of coarray collectives, xx14.f90
is identical to xx14std.f90, profiled in Sec. II-A4.
xx14.f90 calls routine cgca_clvgp that calls CO_SUM
coarray collective, whereas xx14std.f90 calls routine



Fig. 18. Profile function distribution of program xx14, coarray+MPI at 7200
cores on Cray XC30.

cgca_clvgp_nocosum that implements a global sum in
a user code.

Fig. 17 shows the scaling of xx14.f90 on 15000 cores
of the mentioned XC30 system. It is clear that this miniapp
scales well to 7000 cores at which point the scalability drops
dramatically.
cgca_clvgp and cgca_clvgp_nocosum are supposed

to be the most computationally expensive routines in programs
xx14 and xx14std respectively. Both routines have a triple
nested loop over the first 3 dimensions of space coarray.

Profiling results of the xx14 miniapp on 7200 are shown
in Figs. 18 and 19. It can clearly be seen that cgca_clvgp
is indeed the most computationally expensive routine of the
miniapp, taking over 30% of the total time. The second
most time consuming routine, using 14% of the total time,
is MPI_BCAST which belongs to the ParaFEM code.

This result is in stark contrast to xx14std profil-
ing data, shown in Figs. 9 and 10, which show that
cgca_clvgp_nocosum takes just over 1% of runtime.

CrayPAT is also able to show profiling information by
separating code functions into different groups. Fig. 19 shows
the results from sampling the miniapp using 7200 cores with
1 MPI process and 1 coarray image per core. USER functions
are those defined by the miniapp, MPI functions contain the
time spent in MPI library functions and ETC functions are
generally library or miscellaneous functions.

One of the main obstacles to scaling applications out to large
numbers of parallel tasks is load imbalance. Fig. 20 shows
the whole program activity over processing elements (PEs)
6363 to 7199, where the time taken by classes of functions,
e.g. User, Collectives, Synchronisation, Data transfer, etc. is
shown as a percentage of the total time. This diagram is a good
indicator of the load balance present in the whole application.
A significant load imbalance in the user functions in xx14
can be seen in Fig. 20.

Although CrayPAT supports coarrays, a small number of
issues were found when profiling the MPI/coarray miniapps.
These issues have been already reported to Cray develop-
ers for further investigation in upcoming releases. It was

Fig. 19. Raw profiling data of program xx14, coarray+MPI on 7200 cores
on Cray XC30.

noticed that the tracing experiments of ParaFEM/GCPACK
miniapps were reporting an inconsistent percentage of time
for some USER functions which were previously highlighted
in sampling experiments. Figs. 21 and 22 illustrate this effect
on subroutine cgca_gcupda. Although the sampling report
indicates that this subroutine is the most time consuming user
function, cgca_gcupda is not present at all in the tracing
report, even when cgca_gcupda was specifically traced.
However, in the miniapp, cgca_gcupda and cgca_hxi
are called exactly the same number of times. Indeed a
call to cgca_gcupd is immediately followed by a call to
cgca_hxi in cgca_clvgp.

IV. CONCLUSIONS

TAU (Tuning and Analysis Utilities) toolkit is well suited
for profiling and tracing analysis of pure coarray and mixed
coarray+MPI programs, where coarray operations are ul-
timately mapped onto MPI calls. The Intel implementa-
tion of coarrays seems to rely on MPI-2 RMA, with
MPI_Win_unlock heavily dominating run times in three out
of four analysed programs. Although MPI-2 RMA is supposed
to be an optimal mapping of PGAS coarray communications,
these results show that performance critically depends on
implementation, thus indicating. a potential for optimisation
of (MPI based) coarray implementations, such as that from
Intel. CrayPAT (Cray Performance Analysis Tool) has been
proved useful in highlighting load imbalance and performance
hotspots in coarray+MPI programs on Cray XC30. Both TAU
and CrayPAT are powerful and flexible tracing and sampling
tools suitable for pure coarray and mixed MPI+coarray pro-
grams. The major differences from the user’s prospective
are that TAU is a free open source highly portable tool,
whereas CrayPAT is a proprietary tool available only on Cray



Fig. 20. xx14 whole program activity on Cray XC30, shown in percentage of the total time per process. Processes 6363 to 7199 are shown.

Fig. 21. Sampling data for program xx14, coarray+MPI, on 7200 cores on
Cray XC30, indicating that cgca_gcupda is the most time consuming.

Fig. 22. Tracing data for program xx14, coarray+MPI, on 7200 cores on
Cray XC30.

systems. CrayPAT does not require program recompilation,
whereas TAU 2.25.2 can support coarrays only using compiler
instrumentation which requires a recompilation.
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