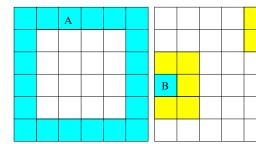
Cellular automata (CA) halo exchange and Fortran coarrays

A. Shterenlikht
Department of Mechanical Engineering
The University of Bristol, Bristol BS8 1TR, UK
mexas@bris.ac.uk

Hartree 2016 Summer School on Engineering Simulation, 30-JUN-2016


CA concurrency (parallelism)

- New cell states, (i + 1), depend only on old cell states, (i).
- State of cell A, S_A : $S_A(i+1) = f(S_A(i), S_1(i) \dots S_8(i)).$
- Cells A and B can be updated concurrently or in parallel.
- Need access only to this cell and its neighbourhood cells.

Example: 2D, Moore's neighbourhood, 8 neighbours (yellow) for any cell (cyan).

(yellow) for any cell (cyan).										
N1	N2	N3								
N4	A	N5								
N6	N7	N8 / N1	N2	N3						
		N4	В	N5						
		N6	N7	N8						

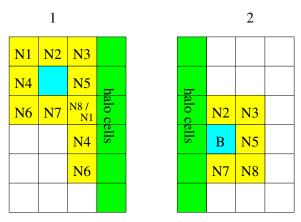
Boundary cells - many possibilities

NE			NE	Е
NE			NE	NE
ND	ND			ND
D	ND			ND
ND	ND			ND
NE			NE	NE

C

- 1. Fixed. Do not change state, $S_{\Delta}(i+1) = S_{\Delta}(i)$.
- 2. Special neighbourhoods. E.g. edge cells *B* or corner cells *C*. Rarely used because not all cells are equal.
- 3. Self-similar (periodic or wrap-around) boundaries. Top continues as bottom, left continues as right, etc.

CA self-similar boundaries

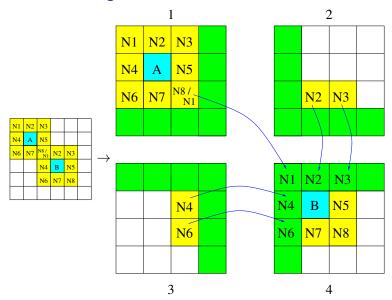

NE		NE	Е	NE			NE	Е	NE			NE	Е
NE		NE	NE	NE			NE	NE	NE			NE	NE
ND	ND		ND	ND	ND			ND	ND	ND			ND
D	ND		ND	D	ND			ND	D	ND			ND
ND	ND		ND	ND	ND			ND	ND	ND			ND
NE		NE	NE	NE			NE	NE	NE			NE	NE
NE		NE	Е	NE			NE	Е	NE			NE	Е
NE		NE	NE	NE			NE	NE	NE			NE	NE
ND	ND		ND	ND	ND			ND	ND	ND			ND
D	ND		ND	D	ND			ND	D	ND			ND
ND	ND		ND	ND	ND			ND	ND	ND			ND
NE		NE	NE	NE			NE	NE	NE			NE	NE
NE		NE	Е	NE			NE	Е	NE			NE	Е
NE		NE	NE	NE			NE	NE	NE			NE	NE
ND	ND		ND	ND	ND			ND	ND	ND			ND
D	ND		ND	D	ND			ND	D	ND			ND
ND	ND		ND	ND	ND			ND	ND	ND			ND
NE		NE	NE	NE			NE	NE	NE			NE	NE

CA calculations in parallel

N₁ N2 N3 N4 A N5 N8 / N7 N6 N4 N6 N2 N3 N₅ В N7 N8

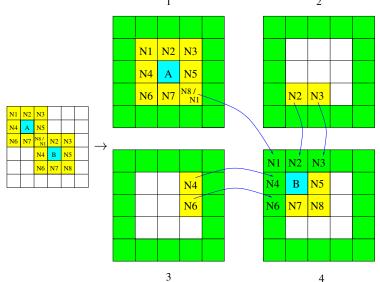
- Example: 2 processes (e.g. threads, MPI processes, etc.)
- Cell A is updated on process 1.
- ► Cell *B* cannot be calculated by process 2, because some neighbourhood cells are stored on process 1.
- Solution halo cells.

CA halos

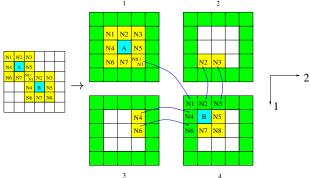

- ▶ Halo (ghost) cells are added beyond any new boundary.
- ► Halo cells are used to create a neighbourhood for all new boundary cells.

CA halo exchange 1D

N₁ N2 N₃ N4 Α N₅ N1 N2 N3 N8 / N7 N6 N1 N2 N3 N₁ N6 N7 N8 N2 N3 В N4 N4 - BN5 N6 N7 N8 N₆ N6 N7 N8


- ▶ Boundary CA cells from one process are copied into the halo cells on the matching process.
- ▶ Blue arrows copy boundary CA cells from process 1 into the halo cells on process 2.
- ► Red arrows copy boundary CA cells from process 2 into the halo cells on process 1.

CA halo exchange 2D

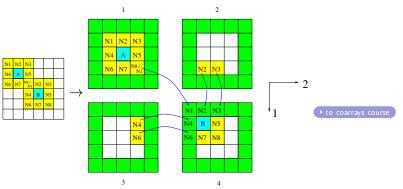

Only the necessary halo transfer operations are shown.

CA halo exchange + self-similar boundary 2D

The same solution is used for halo cells and for self-similar boundaries.

CA arrays in Fortran

▶ CA array is 6×6 :


```
integer :: ca(6,6)
```

▶ CA array on each process is 3×3 :

ightharpoonup CA + halo array is 5 imes 5 on each process:

```
integer :: ca(5,5)
```

CA arrays in parallel: Fortran 2008 coarrays

