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ABSTRACT

Coarrays are a Fortran 2008 standard feature intended for SPMD type parallel pro-
gramming. Theruntime environment starts a number of identical executable images of
the coarray program, on multiple processors, which could be actual physical processors
or threads.Each image has a unique number and its private address space.Ordinary
variables are private to an image. Coarray variables are available for read/write access
from any other image.Coarray communications are of "single sided" type, i.e. a remote
call from image A to image B does not need to be accompanied by a corresponding call
in image B. This feature makes coarray programming a lot simpler than MPI. The stan-
dard provides synchronisation intrinsics to help avoid race conditions or deadlocks.Any
ordinary variable can be made into a coarray - scalars, arrays, intrinsic or derived data
types, pointers, allocatables are all allowed. Coarrayscan be declared in, and passed to,
procedures. Coarraysare thus very flexible and can be used for a number of purposes.
For example a collection of coarrays from all or some images can be thought of as a large
single array. This is precisely the inverse of the model partitioning logic, typical in MPI
programs. Acoarray program can exploit functional parallelism too, by delegating dis-
tinct tasks to separate images or teams of images.Coarray collectives are expected to
become a part of the next version of the Fortran standard.A major unresolved problem
of coarray programming is the lack of standard parallel I/O facility in Fortran. Inthis
paper several simple complete coarray programs are shown and compared to alternative
parallel technologies - OpenMP, MPI and Fortran 2008 intrinsic "do concurrent".Inter
image communication patterns and data transfer are illustrated. An example of a materi-
als microstructure simulation coarray program scaled up to 32k cores is shown. Problems
with coarray I/O at this scale are highlighted and addressed with the use of MPI-I/O.A
hybrid MPI/coarray programming is discussed and illustrated with a finite element/cellu-
lar automata (CAFE) multi-scale model.The paper completes with a description of the
new coarray language features, expected in the 2015 Fortran standard, and with a brief
list of coarray resources.
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1. Coarray images

The runtime environment spawns a number of identical copies of the executable, calledimages.
Hence coarray programs follow SPMD model.

runtime environment

image 1 image 2 image n. . .

$ cat one.f90
use iso_fortran_env, only: output_unit
implicit none
integer :: img, nimgs
img = this_image()

nimgs = num_images()
write (output_unit,"(2(a,i2))") "image: ", img, " of ", nimgs
end
$
$ ifort -o one.x -coarray -coarray-num-images=5 one.f90
$ ./one.x
image: 1 of 5
image: 3 of 5
image: 4 of 5
image: 2 of 5
image: 5 of 5
$

All I/O units, exceptinput_unit, are private to an image.However the runtime environment typi-
cally mergesoutput_unit anderror_unit streams from all images into a single stream.

input_unit is preconnected only on image 1.

With the Intel compiler one can set the number of images with the environment variable:

$ FOR_COARRAY_NUM_IMAGES=9
$ export FOR_COARRAY_NUM_IMAGES
$ ./one.x
image: 1 of 9
image: 2 of 9
image: 9 of 9
image: 8 of 9
image: 6 of 9
image: 3 of 9
image: 7 of 9
image: 4 of 9
image: 5 of 9
$

These results were obtained with Intel compiler 15.0.0 20140723.

Note: as with MPI the order of output statements is unpredictable.
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2. Coarray syntax and remote calls

The standard1, 2, 3uses square brackets[], to denotes a coarray variable. Any image has read/write
access to all coarray variables on all images. It makes no sense to declare coarray parameters.

Examples of coarray variables:

integer :: i[*] ! scalar integer coarray with a single
! codimension

integer, codimension(*) :: i ! equivalent to the above
real :: r(100) [:] ! real allocatable array coarray

! lower upper
! cobound cobound
! | |
! | |
! upper | |
! bound | |
! lower | | |
! bound | | |
! | | | |
complex :: c(7,0:13) [-3:2,5,*] ! complex array coarray of corank 3
! | | | | |
! subscripts cosubscripts

Similar to ordinary Fortran arrays,corankis the number of cosubscripts.Eachcosubscriptruns from
its lower coboundto its upper cobound.New intrinsics are introduced to return these values:lcobound,
ucobound, this_image, image_index

Remote calls are indicated by explicit reference to an image index using the square brackets,[]:

$ cat x.f90
integer :: img, i[*]
img = this_image()
i = img

if ( img .eq. 1 ) i = i[ num_images() ]
if ( img .eq. num_images() ) i = i[ 1 ]
write (*,*) img, i
end
$ ifort -coarray x.f90
$ setenv FOR_COARRAY_NUM_IMAGES 4
$ ./a.out

1 4
3 3
2 2
4 1

$

This is a actually a race condition. Synchronisation between images is required here.
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The last upper cobound is always an*, meaning that it is only determined at run time. Note that
there can be subscript sets which do not map to a valid image index. For suchinvalid cosubscript sets
image_index returns0:

$ cat z.f90
character( len=10 ) :: i[-3:2,5,*]
if ( this_image() .eq. num_images() ) then

write (*,*) "this_image()", this_image()
write (*,*) "this_image( i )", this_image( i )
write (*,*) "lcobound( i )", lcobound( i )
write (*,*) "ucobound( i )", ucobound( i )
write (*,*) "image_index(ucobound(i))", image_index( i, ucobound( i ) )

end if
end
$ ifort -coarray z.f90
$ setenv FOR_COARRAY_NUM_IMAGES 60
$ ./a.out
this_image() 60
this_image( i ) 2 5 2
lcobound( i ) -3 1 1
ucobound( i ) 2 5 2
image_index(ucobound(i)) 60
$ setenv FOR_COARRAY_NUM_IMAGES 55
$ ./a.out
this_image() 55
this_image( i ) -3 5 2
lcobound( i ) -3 1 1
ucobound( i ) 2 5 2
image_index(ucobound(i)) 0
$

Coarrays must be of the same shape on all images. If arrays of different shape/size are needed on dif-
ferent images, a simple solution is to have coarray components of a derived type:

$ cat pointer.f90
program z
implicit none
type t
integer, allocatable :: i(:)

end type
type(t) :: value[*]
integer :: img

img = this_image()
allocate( value%i(img), source=img ) ! not coarray - no sync
sync all
if ( img .eq. num_images() ) value%i(1) = value[ 1 ]%i(1)
write (*,*) "img", img, value%i
end program z
$ ifort -coarray -warn all -o pointer.x pointer.f90
$ setenv FOR_COARRAY_NUM_IMAGES 3
$ ./pointer.x
img 1 1
img 2 2 2
img 3 1 3 3
$
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3. Synchronisation

All images synchronise at program initialisation and at program termination.

sync all is a global barrier - all images wait for each other.

sync images is for more flexible synchronisation.

$ cat y.f90
integer :: img, nimgs, i[*], tmp

! implicit sync all
img = this_image()

nimgs = num_images()
i = img ! i is ready to use

if ( img .eq. 1 ) then
sync images( nimgs ) ! explicit sync 1 with last img
tmp = i[ nimgs ]
sync images( nimgs ) ! explicit sync 2 with last img

i = tmp
end if

if ( img .eq. nimgs ) then
sync images( 1 ) ! explicit sync 1 with img 1
tmp = i[ 1 ]
sync images( 1 ) ! explicit sync 2 with img 1

i = tmp
end if
write (*,*) img, i

! all other images wait here
end
$ ifort -coarray y.f90
$ setenv FOR_COARRAY_NUM_IMAGES 5
$ ./a.out

3 3
1 5
2 2
4 4
5 1

$

A deadlock example:

$ cat deadlock.f90
if ( this_image() .eq. num_images() ) sync images( 1 )
end
$ ifort -coarray deadlock.f90
$ ./a.out
deadlock!
CTRL/C

Allocation and deallocation of allocatable coarrays always involves implicit synchronisation.
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4. Implementation and performance

The standard deliberately (and wisely) says nothing on this.A variety of underlying parallel tech-
nologies can be, and some are, used - MPI, OpenMP, SHMEM, GASNet, ARMCI, etc. As always, perfor-
mance depends on a multitude of factors.

The Standardexpects, but does not require it, that coarrays are implemented in a way that each image
knows the address of all coarrays in memories of all images, something like the integer coarrayi in Fig. 1.
This is sometimes calledsymmetric memory. An ordinary, non-coarray, variabler might be stored at differ-
ent addresses by different processes. The Cray compiler certainly does this, other compilers may do too.

xf3d r

real :: r

some image

i(:)[5]=i

xf0f ...
xf0e i(2)
xf0d i(1)
xf0c ...
.... ...
xb5a r

image 5

i(:)[5]=i

real :: r
addraddr

xf0c ...
xf0d i(1)
xf0e i(2)
xf0f ...
.... ...

Figure 1. A schematic illustration of symmetric memory. On all images coarray variablei is
allocated at the same addressxf0d. An ordinary, non-coarray variabler is allocated at differ-
ent addresses on all images.

Fig. 2 shows scaling of a coarray program calculatingπ using the Gregory - Leibniz series:

π = 4Σ∞
n=1

(−1)n−1

2n − 1

Given the series upper limit, each image sums the terms beginning with its image number and with a stride
equal to the number of images.Then image 1 sums the contributions from all images.To avoid the race
condition, image 1 must make sure that all images have completed their calculations, before attempting to
read the values from them. Hence synchronisation between the images is required.Here we usesync
all, the global barrier. The data was obtained with the Intel compiler on a single nodes with 16 2.6Hz
SandyBridge cores. As always, a great many things affect performance, coarrays are no exception.

1

10

1 2 4 8 16 32 64
1

10
time, s speed-up

images

time, s
speed-up

Figure 2 Runtimes and scaling of a coarray program calculatingπ using the Gregory - Leibniz
series.
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The key segment of the code, - the loop for partialπ , and the calculation of the totalπ value, is
shown below for the coarray code, and also for MPI, Fortran 2008 new intrinsicDO CONCURRENT and
OpenMP.

Coarrays

do i = this_image(), limit, num_images()
pi = pi + (-1)**(i+1) / real( 2*i-1, kind=rk )
end do
sync all ! global barrier
if (img .eq. 1) then
do i = 2, nimgs
pi = pi + pi[i]

end do
pi = pi * 4.0_rk

end if

MPI

do i = rank+1, limit, nprocs
pi = pi + (-1)**(i+1) / real( 2*i-1, kind=rk )
end do
call MPI_REDUCE( pi, picalc, 1, MPI_DOUBLE_PRECISION, &

MPI_SUM, 0, MPI_COMM_WORLD, ierr )

picalc = picalc * 4.0_rk

DO CONCURRENT

loops = limit / dc_limit
do j = 1, loops
shift = (j-1)*dc_limit
do concurrent (i = 1:dc_limit)
pi(i) = (-1)**(shift+i+1) / real( 2*(shift+i)-1, kind=rk )

end do
pi_calc = pi_calc + sum(pi)

end do

pi_calc = pi_calc * 4.0_rk

OpenMP

!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i) REDUCTION(+:pi)
do i = 1, limit
pi = pi + (-1)**(i+1) / real( 2*i-1, kind=rk )
end do
!$OMP END PARALLEL DO

pi = pi * 4.0_rk

The coarray implementation is closest to the MPI implementation. When coarray collectives are in
the standard, the similarity will be even greater.
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5. Termination

In a coarray program a distinction is made between anormalanderror termination.

Normal termination on one image allows other images to finish their work. STOP andEND PRO-
GRAM initiate normal termination.

The new intrinsicERROR STOP initiates error termination.The purpose of error termination is to
terminateall images as soon as possible.

Example of a normal termination:

$ cat term.f90
implicit none
integer :: i[*], img
real :: r
img = this_image()
i = img

if ( img-1 .eq. 0 ) stop "img cannot continue"
do i=1,100000000
r = atan(real(i))
end do
write (*,*) "img", img, "r", r
end
$ ifort -coarray term.f90 -o term.x
$ ./term.x
img cannot continue
img 2 r 1.570796
img 4 r 1.570796
img 3 r 1.570796
$

Image 1 has encountered some error condition and cannot proceed further. Howev er, this does not
affect other images. They can continue doing their work. HenceSTOP is the best choice here.

Example of an error termination:

$ cat errterm.f90
implicit none
integer :: i[*], img
real :: r
img = this_image()
i = img

if ( img-1 .eq. 0 ) error stop "img cannot continue"
do i=1,100000000
r = atan(real(i))
end do
write (*,*) "img", img, "r", r
end
$ ifort -coarray errterm.f90 -o errterm.x
$ ./errterm.x
img cannot continue
application called MPI_Abort(comm=0x84000000, 3) - process 0
rank 0 in job 1 newblue3_53066 caused collective abort of all ranks
exit status of rank 0: return code 3

$

Here the error condition on image 1 is severe. It does not make sense for other images to continue.
ERROR STOP is the appropriate choice here.
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6. Cellular automata materials library

This is an example of using coarrays to parallelise an engineering code.Parallelisation here has two
aims: (1) making very large memory available to a program, to simulate large three-dimensional models,
and (2) speeding up the program.

The library4, 5, 6 is used to simulate the evolution of polycrystalline microstructures, including grain
coarsening and grain boundary migration, and transgranular cleavage. Themain coarray variable is:

integer :: space(:,:,:,:) [:,:,:]

The model space is a "box" made from coarrays on all images, as shown in Fig. 3.

Figure 3. Thismodel is made of coarrays on 64 images, arranged in a 4× 4 × 4 grid.

Halo exchange is simple with coarray syntax.This command reads model boundary cells along
dimension 2,ubr(2), from an image with cosubscript one lower than this image, along codimension 2,
into halo cells on this image,lbv(2):

if ( imgpos(2) .ne. lcob(2) ) &
space( lbr(1):ubr(1), lbv(2), lbr(3):ubr(3), : ) = &
space( lbr(1):ubr(1), ubr(2), lbr(3):ubr(3), : ) &
[ imgpos(1), imgpos(2)-1, imgpos(3) ]



-9-

A slice of the model space is shown in Fig. 4.

Figure 4. A slice of the 4× 4 × 4 coarray grid model. The halo cells are highlighted.

Model results and performance

Fig. 5 shows the grain boundaries in a random equiaxed microstructure.The gray lines crossing the
grain boundaries are traces of the cleavage cracks propagated though the microstructure.

Figure 5. Grainboundaries in model with 30 grains. Grain interiors are not shown for clarity.
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Fig. 6 shows a macro-crack formed from merging micro-cracks in individual grains.Formation of
the macro-crack is an emergent phenomenon.

Figure 6. A model with 1000 grains showing the cleavage macro-crack in a polycrystalline
microstructure.

A microstructure simulated with the space coarray allocated as

allocate( space( 200, 200, 200 ) [ 8, 8, * ], source=0, stat=errstat )

on 512 images is shown in Fig. 7. The last upper codimension is 8. In total there are 4× 109 cells within
40,960 grains. The HECToR wall time was 5m, of which most most I/O!
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Figure 7. A random equiaxed microstructure representing polycrystalling iron. The colours
denote random orientation of each single crystal.

Fig. 8 shows linear scaling of the microstructure generation code, with 1/4 efficiency, up to 32k cores
(images). Thelines indicate scaling of 4 different synchronisation methods.It is interesting to note that
ev en the simplest strategy, a global barrier, SYNC ALL, shows good scaling up to 4096 cores, after which its
performance starts to drop.SYNC IMAGES serial is least efficient. Inthis method a single image is doing
collective operations, while all other images wait. SYNC IMAGES divide and conquer is a collective
implemented as a binary tree, i.e. for 2p images this method requires onlyp steps to perform a collective
operation. Performanceof this method is very stable up to 32k cores.Finally, Cray CO_SUM was used,
which at this time is still an extension to the standard.It shows just as good scaling asSYNC IMAGES
divide and conquer, with the extra advantage that no additional user code is needed.
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100
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8 64 512 4096 32768

speed-up

Number of cores, Hector XE6

SYNC ALL

SYNC IMAGES serial
SYNC IMAGES d&c

co_sum

Figure 8. Scalingof the microstructure generation coarray code, with four different synchroni-
sation methods.

7. I/O

Although a part of the original design of coarrays, parallel I/O did not make it to the 2008 standard.
At this stage no parallel I/O provision is planned for the next revisions of the standard either. This presents
a problem for programs where coarrays are used as a distributed storage of large dataset, as is the case in
the microstructure library.

There are several possible ways to output the results from the microstructure model:

• A single image acts as a single writer. It reads data from all images and writes it into a single file in
the correct order, ready for post-processing.For a 3D array with 3 codimensions the resulting code is
simple but very slow!

do coi3 = lcob(3), ucob(3)
do i3 = lb(3), ub(3)
do coi2 = lcob(2), ucob(2)
do i2 = lb(2), ub(2)
do coi1 = lcob(1), ucob(1)
write( unit=iounit, iostat=errstat ) &
space( lb(1):ub(1), i2, i3, stype ) [ coi1, coi2, coi3 ]

end do
end do
end do
end do
end do

In this example we use a sequential binary stream file.Five nested do loops are involved with little
possibility for optimisation.

• Each image writes its own data into a separate file.This puts a lot of pressure on the OS, e.g. forcing
the OS to create many file descriptors simultaneously. A lot of work is then still needed to put the
data into a single file in the correct order. Alternatively, post-processing readers must be designed
which can read the model from multiple files, in the right order. Either way, this is a lot of work.
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• Each image writes its data into a shared file in the right place. This is not supported by Fortran, but is
supported by MPI/IO.

call MPI_Type_create_subarray( &
arrdim, arraygsize, arraysubsize, arraystart, &
MPI_ORDER_FORTRAN, MPI_INTEGER, filetype, ierr )

call MPI_File_set_view( fh, disp, MPI_INTEGER, &
filetype, ’native’, MPI_INFO_NULL, ierr )

call MPI_File_write_all(fh, coarray(1,1,1, stype), &
arraysubsize(1)*arraysubsize(2)*arraysubsize(3), &
MPI_INTEGER, status, ierr )

On Lustre file system (lfs, a popular parallel file system), after some optimisation oflfs stripe
size andlfs stripe count, I/O rates up to 2.3 GB/s were achieved in 2013 on HECToR, the UK
national supercomputer. This is a speedup of over 20 compared to a single writer.

8. Hybrid coarray/MPI programming

Cray systems allow hybrid coarray/MPI programs.Each MPI process is mapped to an image, such
that in Fortran, MPI process 1 corresponds to image 1, and so on.We use this strategy to link MPI finite
element library ParaFEM7 with the coarray microstructure library. Finite elements are used to solve the
continuum mechanics problem at the macro-scale, while the coarray microstructure code is used to simulate
damage and fracture on the micro-scale. This coupling implements a popular hybrid cellular automata -
finite element (CAFE) multi-scale model.

With the "brick" of cells positioned somewhere inside the body under analysis, the partition of the
problem into MPI processes and images is schematically shown in Fig. 9 for 4 processing elements.

MPI rank 31
2

3
4

MPI rank 1

MPI rank 2

MPI rank 4

Figure 9 A schematic of the spatial arrangement of the finite element model and the region
where the material microstructure is modelled with coarrays.

There are 4 sub-domains, processed by 4 MPI processes with ranks 1 to 4.There are 4 images with
the coarrays of cellular microstructure.Each process has its chunk of finite elements and its microstructure
coarray. The problem is that FEs and corresponding CAs are not always allocated to the same processor, as
shown in Fig. 10. The boxes are meant to represent the processing elements (PE). Each processing ele-
ment is given an MPI rank and a coarray image number. The arrows in the diagram indicate data transfer
between CA and FE. Coarrays on all images will need FE data from MPI process 4.Coarrays on images 3
and 4 will also need FE data from MPI process 3. MPI processes 0 and 1 do not need to communicate with
CA at all.
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MPI rank 4

3 41
2

MPI rank 1 MPI rank 2 MPI rank 3

Figure 10. A schematic of data location and interprocess communication in a hybrid
MPI/coarray program with 4 processing elements.

The mapping between elements and cells occupying the same physical space is done via the original
element centroid coordinates.We use a coarray of derived type with a single allocatable component for
this:

type cgca_pfem_rca
real( kind=cgca_pfem_iwp ), allocatable :: r(:,:)

end type cgca_pfem_rca
type( cgca_pfem_rca ) :: cgca_pfem_centroid_tmp[*]
:
allocate( cgca_pfem_centroid_tmp%r( ndim, nels_pp )
:
cgca_pfem_centroid_tmp%r = sum( g_coord_pp(:,:,:), dim=1 ) / nod

whereg_coord_pp is the array with the nodal coordinates allocated asg_coord_pp( nod, ndim,
nels_pp ) nod is the number of nodes per element,ndim=3 is the number of spatial dimensions, and
nels_pp is the number of elements per MPI process.

Fig. 11 is a simulation result of a trans-granular cleavage macrocrack propagation in bcc iron (left).
The macrocrack emerges as cleavage cracks in individual grains join up after crossing grain boundaries
(centre). Greencracks are on {110} planes, yellow are on {100} planes.Cleavage modelling is carried out
at the meso-scale with cellular automata (CA). The process is driven by the stress fields calculated with the
finite element method (FE) on the macro-scale (right). These results are representative of the potential of a
multi-scale CAFE modelling framework.8

Figure 11. Resultsfrom the CAFE model on several levels, showing: (left image) micro-
cracks in individual grains merging into a propagating macro-crack; (centre image) grain
boundaries of a cluster of 1000 grains, and (right) the deformed mesh illustrating the deforma-
tion of the body on the macro-scale.
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9. Next standard

The next Fortran standard is expected in 2015. It will have new coarray features, detailed in the tech-
nical specification TS 18508, "Additional Parallel Features in Fortran".9

At this stage draft TS 18508 includes:

• Teams - subsets of images working on independent tasks. This feature helps exploit functional paral-
lelism in coarray programs. Proposed new statements are:FORM TEAM, CHANGE TEAM andSYNC
TEAM. Proposed new intrinsics are:GET_TEAM andTEAM_ID.

• Events - similar to locks?Proposed new statements are:EVENT POST andEVENT WAIT. Proposed
new intrinsic isEVENT_QUERY.

• Facilities for dealing with failed images. This area includes anything from hardware failures affect-
ing only selected images, network connectivity failures and software issues, such as severe (unrecov-
erable) errors on selected images.With the numbers of images reaching hundreds of thousands and
beyond, i.e. at peta- and exa-scale HPC, the issue of diagnosing and dealing with failed images will
increase in importance. Proposed new statements are:FAIL IMAGE. Proposed new intrinsics are:
FAILED_IMAGES, IMAGE_STATUS andSTOPPED_IMAGES.

• New atomic intrinsics, such as:ATOMIC_ADD, ATOMIC_OR or ATOMIC_XOR.

• Collectives:CO_MAX, CO_MIN, CO_SUM, CO_REDUCE andCO_BROADCAST.

The language will be a lot richer, but more complex to learn and use.

10. Coarray resources

The standard is the best reference.A draft version is freely available online.10

A more readable, but just as thorough, resource is the MFE11 book.

Sections on coarrays, with examples, can be found in several further books.12, 13, 14, 15

At this time Fortran 2008 coarrays are fully supported only by the Cray compiler. The Intel v.15
coarray support is nearly complete.16 We’v e found bugs in both Cray and Intel compilers though.

G95 and GCC compilers support syntax, but until recently lacked the underlying inter-image commu-
nication library. Howev er, a recent announcement of the OpenCoarrays project (http://opencoarrays.org)
for "developing, porting and tuning transport layers that support coarray Fortran compilers" is likely to
change this. GCC5 can already be used with OpenCoarrays.

Rice compiler (Rice University, USA) and OpenUH compiler (University of Houston, USA)
(http://web.cs.uh.edu/˜openuh/) also support coarrays.17 However, we hav en’t tried those.

The Fortran mailing list,COMP-FORTRAN-90@JISCMAIL.AC.UK, and the Fortran Usenet news-
group,comp.lang.fortran, are invaluable resources for all things Fortran, including coarrays.
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