Fortran 2008 coarrays

Anton Shterenlikhtt, Lee Mgattst,1, Luis Cebamanoss§, David Henty§

tMech Eng Dept, The Uwérsity of Bristol, Bristol BS8 1TR, mexas@bris.ac.uk
tDirectorate of IT Services, The Weisity of ManchestelUK and Oxford e-Science
Research Centre, The Waisity of Oxford, UK, Lee.Margetts@manchester.ac.uk
8EPCC, The Uniersity of Edinburgh, Kings Buildings, Edinburgh EH9 3FD UK,
l.cebamanos@epcc.ed.ac.uk, d.henty@epcc.ed.ac.uk

ABSTRACT

Coarrays are adftran 2008 standard feature intended for SPMD type parallel pro-
gramming. Theuntime erironment starts a humber of identicaleeutable images of
the coarray program, on multiple processors, which could be actysitahprocessors
or threads.Each image has a unique number and itgamriaddress spaceOrdinary
variables are priate to an image. Coarray variables aweilable for read/write access
from ary other image.Coarray communications are of "single sided" type, i.e. a remote
call from image A to image B does not need to be accompanied by a corresponding call
in image B. This feature makes coarray programming a lot simpler than MPI. The stan-
dard provides synchronisation intrinsics to helpidrace conditions or deadlockény
ordinary variable can be made into a coarray - scalars, arrays, intrinsicvad diztia
types, pointers, allocatables are all wkal. Coarraygan be declared in, and passed to,
procedures. Coarrayae thus very flexible and can be used for a number of purposes.
For example a collection of coarrays from all or some images can be thought of gs a lar
single array This is precisely the wrerse of the model partitioning logic, typical in MPI
programs. Acoarray program carxploit functional parallelism too, by deding dis-
tinct tasks to separate images or teams of ima@esrray collecties ae expected to
become a part of the next version of the Fortran standamajor unresolved problem
of coarray programming is the lack of standard parallel 1/O facilityarir&n. Inthis
paper seeral simple complete coarray programs are shown and compared to aléernati
parallel technologies - OpenMRIPI and Brtran 2008 intrinsic "do concurrent’nter
image communication patterns and data transfer are illustratedxafmpée of a materi-
als microstructure simulation coarray program scaled up to 32k coresvis. sRooblems
with coarray I/O at this scale are highlighted and addressed with the use of MA-1/O.
hybrid MPI/coarray programming is discussed and illustrated with a finite element/cellu-
lar automata (CAFE) multi-scale moderhe paper completes with a description of the
new coarray language features, expected in the 2015 Fortran standard, and with a brief
list of coarray resources.

26 February 2015

1. Coarray images

The runtime environment swas a number of identical copies of thee@itable, calledmages.
Hence coarray programs foddSPMD model.

runtime environment

image 1 image 2 v image n

$ cat one.f90
use iso_fortran_env, only: output_unit
inmplicit none
integer :: inmg, nings
img = this_imge()
ni ngs = num.i mages()

wite (output_unit,"(2(a,i2))") "image: ", ing, " of ", nings
end

$

$ifort -0 one.x -coarray -coarray-numimges=5 one.f90
$./one.x

imge: 1 of 5

imge: 3 of 5

imge: 4 of 5

imge: 2 of 5

imge: 5 of 5

$

All I/O units, excepti nput _uni t, are private to an imageHowever the runtime environment typi-
cally mergeut put _uni t anderror_unit streams from all images into a single stream.

i nput _uni t is preconnected only on image 1.
With the Intel compiler one can set the number of images with the environment variable:

$ FOR_COARRAY_ NUM | MAGES=9
$ export FOR COARRAY_NUM | MAGES

$./one.x

imge: 1 of 9
imge: 2 of 9
imge: 9 of 9
imge: 8 of 9
imge: 6 of 9
imge: 3 of 9
imge: 7 of 9
imge: 4 of 9
imge: 5 of 9
$

These results were obtained with Intel compiler 15.0.0 20140723.
Note: as with MPI the order of output statements is unpredictable.

2. Coarray syntax and remote calls

The standartl? 2uses square braets[] , to denotes a coarrayaviable. Aly image has read/write
access to all coarray variables on all images. It makes no sense to declare coarray parameters.

Examples of coarray variables:

scal ar integer coarray with a single
codi mensi on

equi val ent to the above

real allocatable array coarray

integer :: i[*]

i nteger, codinension(*) :: i
real :: r(100) [:]

| ower upper
cobound cobound

I
!

! ||

! ||

! upper | |

! bound | |

! [ower | |]

! bound | |]

! || |

complex :: ¢(7,0:13) [-3:2,5,*] ! conmplex array coarray of corank 3

I

! subscripts cosubscripts

Similar to ordinary Fortran arraysprankis the number of cosubscriptEachcosubscripruns from
its lower coboundo its upper cobound.New intrinsics are introduced to return thesdues:! cobound
ucobound, t hi s_i mage, i nage_i ndex

Remote calls are indicated by explicit reference to an imagg usileg the square brackefq,:

$ cat x.f90
integer :: ing, i[*]
img = this_i mge()
i = inyg
if (im.eqg. 1) i =i[num.imges()]
if (imy.eq. numimges()) i =i[1]
wite (*,*) ing, i
end

$ ifort -coarray x.f90
$ setenv FOR COARRAY NUM | MAGES 4
$./a.out

ADNWE
PN Whr

$

This is a actually a race condition. Synchronisation between images is required here.

The last upper cobound iswalys an*, meaning that it is only determined at run time. Note that
there can be subscript sets which do not map to a valid image ifde suchinvalid cosubscript sets
i mage_i ndex returns0:

$ cat z.f90
character(len=10) :: i[-3:2,5,*]
if (this_imge() .eq. num.inmges()) then
wite (*,*) "this_image()", this_imge()
wite (*,*) "this_image(i)", this_inmage(i)
wite (*,*) "lcobound(i)", |cobound(i)
wite (*,*) "ucobound(i)", ucobound(i)
wite (*,*) "image_index(ucobound(i))", image_index(i, ucobound(i))
end if
end
$ ifort -coarray z.f90
$ setenv FOR_COARRAY_NUM | MAGES 60
$./a.out
this_i mage() 60
this_inmage(i) 2 5 2
| cobound(i) -3 1
ucobound(i) 2 5 2
i mage_i ndex(ucobound(i)) 60
$ setenv FOR_COARRAY_NUM | MAGES 55
$./a.out
this_i mage() 55
this_inmage(i) -3 5 2
| cobound(i) -3
ucobound(i) 2 5 2
i mage_i ndex(ucobound(i)) 0
$

(=Y

(=Y
(=Y

Coarrays must be of the same shape on all images. If arrays of different shape/size are needed on dif-
ferent images, a simple solution is tovb@array components of a desil type:

$ cat pointer.f90

program z
inmplicit none
type t
integer, allocatable :: i(:)
end type
type(t) :: value[*]
integer :: ing
img = this_inmage()
al l ocate(val ue% (ing), source=ing) ! not coarray - no sync
sync al

if (img .eq. num.inmages()) value% (1) = value[1]% (1)
wite (*,*) "inmg", inmg, value%
end program z
$ifort -coarray -warn all -o pointer.x pointer.f90
$ setenv FOR_COARRAY_NUM | MAGES 3
$./pointer.x

i mg 1 1
i ng 2 2 2
i ng 3 1 3 3

$

3. Synchronisation
All images synchronise at program initialisation and at program termination.
sync al | is a global barrier - all images wait for each other.
sync i mages is for more flexible synchronisation.

$ cat y.f90
integer :: ing, nings, i[*], tnp
I inplicit sync all
i mgy this_i mage()

ni ngs = num.i nmages()
i = inyg ' i is ready to use

if (im.eqg. 1) then

sync i nmages(nings) I explicit sync 1 with last inyg
tnp = i[ninmgs]

sync i nmages(nings) I explicit sync 2 with last inyg
i =tnp

end if

if (img .eq. ninmgs) then

sync inmages(1) I explicit sync 1 with ing 1
tmp = i[1]

sync inmages(1) I explicit sync 2 with ing 1
i =tnp

end if

wite (*,*) ing, i
I all other images wait here
end
$ ifort -coarray y.f90
$ setenv FOR_COARRAY_NUM | MAGES 5

$./a.out
3 3
1 5
2 2
4 4
5 1
$

A deadlock example:

$ cat deadl ock. f90

if (this_imge() .eq. num.imges()) sync inmages(1)
end

$ ifort -coarray deadl ock.f90

$./a.out

deadlock!

CTRL/C

Allocation and deallocation of allocatable coarraysagb involvesimplicit synchronisation.

4. Implementation and performance

The standard deliberately (and wisely) says nothing on thigariety of underlying parallel tech-
nologies can be, and some are, used - MPI, OpeBMIAEM, GASNet, ARMCI, etc. As avays, perfor
mance depends on a multitude of factors.

The Standar@xpects but does not require it, that coarrays are implemented iayahat each image
knows the address of all coarrays in memories of all images, somettertdiknteger coarray in Fig. 1.
This is sometimes callesymmetric memoryAn ordinary non-coarrayvariabler might be stored at dér-
ent addresses by different processes. The Cray compiler certainly does this, other compilers may do too.

some image image 5

real :: r real :: r
addr addr

AR xb5a r G IE1= <fOs, ...
@ i (1)
X D€ i(2)

/xfOf

xf 3d r

Figure 1. A schematic illustration of symmetric memor@n dl images coarrayariablei is
allocated at the same addre$€d. An ordinary, non-coarray ariabler is allocated at diér-
ent addresses on all images.

Fig. 2 shows scaling of a coarray program calculatimging the Gregory - Leibniz series:

_ (_1)n—1
AT g1

Given the series upper limit, each image sums the terms beginning with its image number and with a stride
equal to the number of imageThen image 1 sums the contributions from all images.avoid the race
condition, image 1 must malaire that all images kra mmpleted their calculations, before attempting to

read the values from them. Hence synchronisation between the images is reHeiredve usesync

al I, the global barrier The data vas obtained with the Intel compiler on a single nodes with 16 2.6Hz
SandyBridge cores. Aswadlys, a great manthings affect performance, coarrays are no exception.

time, s speed-up
I -
X a
i y :
I I
r X a
I]
v %
r _ 1
! X time, S—+— !
r speed-up - x 3
i i
L
1 X
i
1; ______ ‘ ______ J____l_;l_k_k_l.__ LJ._I__A_‘_;;_I_J._; l
1 2 4 8 16 32 64

images

Figure 2 Runtimes and scaling of a coarray program calculatinging the Gregory - Leibniz
series.

The lkey ®gment of the code, - the loop for partial and the calculation of the totat value, is

shavn belav for the coarray code, and also for MPI, Fortran 2008 imérinsic DO CONCURRENT and

OpenMP.
Coarrays
doi =this_image(), limt, num.imges()
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
sync all ! global barrier
if (imgy .eq. 1) then
doi =2, nings
pi = pi + pi[i]
end do
pi =pi * 4.0_rk
end if
MPI
do i = rank+1, limt, nprocs
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do

cal | MPI_REDUCE(pi, picalc, 1, MPI_DOUBLE_PRECI SION, &
MPl_SUM 0, MPI_COVM WORLD, ierr)

picalc = picalc * 4.0 _rk

DO CONCURRENT

loops =1limt / dc_limt
doj =1, loops
shift = (j-1)*dc_limt
do concurrent (i = 1:dc_limt)
pi (i) = (-1)**(shift+i+1) / real(2*(shift+i)-1, kind=rk)
end do
pi _calc = pi_calc + sum(pi)
end do

pi _calc = pi_calc * 4.0_rk

OpenMP

I $OVP PARALLEL DO DEFAULT(NONE) PRI VATE(i) REDUCTI ON(+: pi)
doi =1, limt
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
' $OVP END PARALLEL DO

pi =pi * 4.0_rk

The coarray implementation is closest to the MPI implementation. When coarray weslegiin

the standard, the similarity will beren greater.

5. Termination
In a coarray program a distinction is made betweeoraalanderror termination.

Normal termination on one image allows other images to finish tlegk. W6TOP andEND PRO-
GRAM initiate normal termination.

The nev intrinsic ERROR STOP initiates error terminationThe purpose of error termination is to
terminateall images as soon as possible.

Example of a normal termination:

$ cat termf90
inmplicit none

integer :: i[*], iny
real :: r

img = this_i mge()

i = inyg

if (im-1.eq. 0) stop "inmg cannot continue"
do i =1, 100000000

r = atan(real (i))
end do
wite (*,*) "img", ing,
end
$ifort -coarray termf90 -0 termx
$./termx
i mg cannot continue

r-, r

i gy 2r 1. 570796

i gy 4 r 1. 570796

i gy 3r 1. 570796
$

Image 1 has encountered some error condition and cannot proceed fHidhewve, this does not
affect other images. Thecan continue doing theiravk. HenceSTOP is the best choice here.

Example of an error termination:

$ cat errtermf90
inmplicit none

integer :: i[*], iny
real :: r

img = this_i mge()

i = iny

if (im-1.eq. 0) error stop "inmg cannot continue"
do i =1, 100000000
r = atan(real (i))
end do
wite (*,*) "img", ing,
end
$ifort -coarray errtermf90 -0 errtermx
$.Jerrtermx
i mg cannot continue
application called MPI_Abort (comm=0x84000000, 3) - process O
rank 0 in job 1 newbl ue3 53066 caused col l ective abort of all ranks
exit status of rank 0: return code 3

$

r-, r

Here the error condition on image 1 ivese. Itdoes not mak ®nse for other images to continue.
ERROR STOP is the appropriate choice here.

6. Cellular automata materialslibrary

This is an example of using coarrays to parallelise an engineering Raddlelisation here has v
aims: (1) making very large memorya#lable to a program, to simulate large three-dimensional models,
and (2) speeding up the program.

The libran/ 5 is used to simulate thevaution of polycrystalline microstructures, including grain
coarsening and grain boundary migration, and transgranul@egéeaThemain coarray variable is:

integer :: space(:,:,:,:) [:,:,:]

The model space is a "box" made from coarrays on all images, as shown in Fig. 3.

image

Figure 3. Thismodel is made of coarrays on 64 images, arranged x4 grid.

Halo exchange is simple with coarray syntabhis command reads model boundary cells along
dimension 2ubr (2), from an image with cosubscript onevker than this image, along codimension 2,
into halo cells on this imagepv(2) :

if (inmgpos(2) .ne. lcob(2))
space(Ibr(1):ubr(1), Ibv(2), Ibr(3):ubr(3),
space(Ibr(1):ubr(1), ubr(2), I[br(3):ubr(3),
[inmgpos(1), ingpos(2)-1, ingpos(3)]

&
= &
&

~— —

-0-

A slice of the model space is shown in Fig. 4.

Figure4. Aslice of the 4< 4 x 4 coarray grid model. The halo cells are highlighted.

Modél results and performance

Fig. 5 shows the grain boundaries in a random equiaxed microstruttueegray lines crossing the
grain boundaries are traces of the eég@ cracks propagated though the microstructure.

Figure5. Grainboundaries in model with 30 grains. Grain interiors are not shown for clarity.

-10-

Fig. 6 shows a macro-crack formed from gieg micro-cracks in individual graind=ormation of
the macro-crack is an emergent phenomenon.

Figure 6. A model with 1000 grains showing the clege macro-crack in a polycrystalline

microstructure.
A microstructure simulated with the space coarray allocated as

al | ocate(space(200, 200, 200) [8, 8, *], source=0, stat=errstat)

on 512 images is shown in Fig. 7. The last upper codimension is 8. In total there Hi2clls within
40,960 grains. The HECToR wall time was 5m, of which most most 1/O!

-11-

Figure 7. A random equiaxed microstructure representing polycrystalling iron. The colours
denote random orientation of each single crystal.

Fig. 8 shavs linear scaling of the microstructure generation code, with fitdeaty, up to 3k cores
(images). Thdines indicate scaling of 4 different synchronisation methdtss interesting to note that
even the simplest stratgy, a dobal barrier SYNC ALL, shows good scaling up to 4096 cores, after which its
performance starts to dro@YNC | MACES serial is least étient. Inthis method a single image is doing
collective qperations, while all other imagesait SYNC | MAGES divide and conquer is a collegti
implemented as a binary tree, i.e. férithages this method requires orpysteps to perform a collegé
operation. Performancaf this method is ery stable up to 32k coresinally, Cray CO_SUMwas used,
which at this time is still an extension to the standdtahows just as good scaling 88NC | MAGES
divide and conquewith the extra advantage that no additional user code is needed.

-12-

speed-up

1000 @
c ~
: SYNC ALL ——f— -
r SYNC | MAGES serial - X _F
r
- SYNC | MAGES d&c - A\ -
|

100 b
E
F
L
L
|
P

10 X
£
F
r
I
F
|
1 I ___L__L___LJ_'_L__l___J_J_J__L___I__L____L‘_l__J__J__L_L_LL'_
8 64 512 4096 32768

Number of cores, Hector XE6

Figure 8. Scalingof the microstructure generation coarray code, with fodermifit synchroni-
sation methods.

7. 1/0

Although a part of the original design of coarrays, parallel I/O did notritak the 2008 standard.
At this stage no parallel I/O provision is planned for the next revisions of the standard Biikqeresents
a problem for programs where coarrays are used as a distributed storagge afdtaset, as is the case in
the microstructure library.

There are seral possible ways to output the results from the microstructure model:

. A single image acts as a single writdrreads data from all images and writes it into a single file in
the correct ordeready for post-processing:or a 3D aray with 3 codimensions the resulting code is
simple but very slow!

do coi 3 = 1cob(3), ucob(3)
do i3 = 1b(3), ub(3)
do coi2 = 1cob(2), ucob(2)
do i2 =1b(2), ub(2)
do coil = 1lcob(1), ucob(1l)
wite(unit=iounit, iostat=errstat) &
space(Ib(1):ub(1), i2, i3, stype) [coil, coi2, coi3]
end do
end do
end do
end do
end do

In this example we use a sequential binary stream Fikee rested do loops areviolved with little
possibility for optimisation.

. Each image writes its own data into a separate Tild@s puts a lot of pressure on the OS, e.g. forcing
the OS to create muarfile descriptors simultaneously lot of work is then still needed to put the
data into a single file in the correct ordeélternatively, post-processing readers must be designed
which can read the model from multiple files, in the right or@&her way this is a lot of work.

-13-

. Each image writes its data into a shared file in the right place. This is not supported by Fortran, but is
supported by MPI/IO.
call MPI_Type_create_subarray(&
arrdim arraygsi ze, arraysubsize, arraystart, &

MPI _ORDER FORTRAN, MPl | NTEGER filetype, ierr)

call MPI _File_set_view fh, disp, Ml _INTEGER &
filetype, 'native’, MPlI_INFO NULL, ierr)

call MPI_File wite_ all(fh, coarray(1,1,1, stype), &
arraysubsi ze(1) *arraysubsi ze(2) *arraysubsi ze(3), &
MPI | NTEGER, status, ierr)

On Lustre file system (Ifs, a popular parallel file system), after some optimisalidrs o6t r i pe
size andl fs stripe count, I/O rates up to 2.3 GB/s were acraé in 2013 on HECToR, the UK
national supercomputefThis is a speedup over 20 compared to a single writer.

8. Hybrid coarray/MPI programming

Cray systems ali@ hybrid coarray/MPI programsEach MPI process is mapped to an image, such
that in Fortran, MPI process 1 corresponds to image 1, and sé/@nse this strategy to link MPI finite
element library RraFEM with the coarray microstructure librarfFinite elements are used to selthe
continuum mechanics problem at the macro-scale, while the coarray microstructure code is used to simulate
damage and fracture on the micro-scale. This coupling implements a poyodar ¢ellular automata -
finite element (CAFE) multi-scale model.

With the "brick" of cells positioned somewhere inside the body under analysis, the partition of the
problem into MPI processes and images is schematically shown in Fig. 9 for 4 processing elements.

Figure 9 A schematic of the spatial arrangement of the finite element model andgtbe re
where the material microstructure is modelled with coarrays.

There are 4 sub-domains, processed by 4 MPI processes with ranks Thierd.are 4 images with
the coarrays of cellular microstructurEach process has its chunk of finite elements and its microstructure
coarray The problem is that FEs and corresponding CAs are wayslallocated to the same processer
shawvn in Fig. 10. The boes are meant to represent the processing elements (PE). Each processing ele-
ment is gven an MPI rank and a coarray image numb&he arrows in the diagram indicate data transfer
between CA and FE. Coarrays on all images will need FE data from MPI procgsardays on images 3
and 4 will also need FE data from MPI process 3. MPI processes 0 and 1 do not need to communicate with
CA at all.

-14-

& =ay & &
e ~
| —
MPI rank 1 Pl rank 2 MPI rank 3 MPI rank 4

Figure 10. A schematic of data location and interprocess communication iybadh
MPI/coarray program with 4 processing elements.

The mapping between elements and cells occupying the sarsiegitspace is done via the original
element centroid coordinate$Ve wse a coarray of desrd type with a single allocatable component for
this:

type cgca_pfemrca

real (ki nd=cgca pfemiw), allocatable :: r(:,:)
end type cgca_pfemrca
type(cgca pfemrca) :: cgca pfemcentroid tnp[*]

al l ocate(cgca pfemcentroid tmp% (ndim nels_pp)

cgca_pfemcentroid tnp% = sum(g_coord pp(:,:,:), dimrl) / nod

whereg_coor d_pp is the array with the nodal coordinates allocated asoord_pp(nod, ndi m
nel s_pp) nod is the number of nodes per elemardj m=3 is the number of spatial dimensions, and
nel s_pp is the number of elements per MPI process.

Fig. 11 is a simulation result of a trans-granularv@ga macrocrack propatjon in bcc iron (left).
The macrocrack emerges as whgge cracks in indidual grains join up after crossing grain boundaries
(centre). Greenracks are on {110} planes, yellaare on {100} planes.Clearage modelling is carried out
at the meso-scale with cellular automata (CA). The process/andhy the stress fields calculated with the
finite element method (FE) on the macro-scale (right). These results are repraseitiadi potential of a
multi-scale CAFE modelling frarmerk.®

displacement Z

Figure 11. Resultsfrom the CAFE model on seral levels, showing: (left image) micro-
cracks in individual grains merging into a propagating macro-crack; (centre image) grain
boundaries of a cluster of 1000 grains, and (right) the deformed mesh illustrating the deforma-
tion of the body on the macro-scale.

-15-

9. Next standard

The net Fortran standard is expected in 2015. It wilkdhaew marray features, detailed in the tech-
nical specification TS 18508, "Additional Parallel Features in Fortran".

At this stage draft TS 18508 includes:

. Teams - subsets of imagesnking on independent tasks. This feature helps exploit functional paral-
lelism in coarray programs. Proposedvratatements ardckOCRMTEAM CHANCGE TEAM andSYNC
TEAM Proposed ne intrinsics areGET_TEAMandTEAM | D.

. Events - similar to locksProposed ne statements ardeVENT POST andEVENT WAI T. Proposed
new intrinsic iIsEVENT _QUERY.

. Facilities for dealing withdiled images. This area includes anything from hardware failuies-af
ing only selected images, network connectivity failures and software issues, suctragseecu-
erable) errors on selected imagé&¥ith the numbers of images reaching hundreds of thousands and
beyond, i.e. at peta- and exa-scale HPC, the issue of diagnosing and dealing with failed images will
increase in importance. Proposedvretatements are=Al L | MAGE. Proposed ne intrinsics are:
FAI LED | MAGES, | MAGE_STATUS andSTOPPED_| MAGES.

. New a&omic intrinsics, such a&sTOM C_ADD, ATOM C_ORor ATOM C_XOR.

. Collectives: CO_MAX, CO_M N, CO_SUM CO_REDUCE andCO_BROADCAST.

The language will be a lot richdaut more completo learn and use.

10. Coarray resources
The standard is the best referengedraft version is freelyailable online!®
A more readable, but just as thorough, resource is the'MfeBk.
Sections on coarrays, with examples, can be foundsmasdurther bookg? 3 1415

At this time Fortran 2008 coarrays are fully supported only by the Cray compler Intel v15
coarray support is nearly compléfaneve found bugs in both Cray and Intel compilers though.

G95 and GCC compilers support syntax, but until recentlyelhdke underlying inter-image commu-
nication library Howeve, a recent announcement of the OpenCoarrays project (http://opencoaghys.or
for "developing, porting and tuning transport layers that support coarray Fortran compilers” is likely to
change this. GCC5 can already be used with OpenCoarrays.

Rice compiler (Rice Unersity, USA) and OpenUH compiler (Uwversity of Houston, USA)
(http://web.cs.uh.edu/"openuh/) also support coarraiewever, we haven't tried those.

The Fortran mailing listCOVP- FORTRAN- 90@ | SCMVAI L. AC. UK, and the Fortran Usenet we-
group,conp. | ang. f ort r an, are invaluable resources for all things Fortran, including coarrays.

11. Acknowledgments

This work used the ARCHER UK National Supercomputing Service (http:/laneherac.uk). This
work also made use of the facilities of HECToR, the $Jifitional high-performance computing service till
2014, which was praded by UoE HPCx Ltd at the Urersity of Edinlurgh, Cray Inc and NG Ltd, and
funded by the Office of Science and Technology through EPSHGh End Computing Programméat
of this work was carried out using the computational facilities of the Advanced Computing Research Cen-
tre, Unversity of Bristol - http://www.bris.ac.uk/acrc/.

References

1. ISO/IEC1539-1:2010)nformation tebnolagy - Plogramming languges - Fortran - Part 1: Base
language

2. ISO/IEC1539-1:2010/Cor 1:2012formation tebnolagy - Pogramming languges - Fortran - Rart
1: Base languge TECHNICAL CORRIGENDUM 1.

3. ISO/IEC1539-1:2010/Cor 2:2013formation tebnolagy - Pogramming languges - Fortran - Rart
1: Base languge TECHNICAL CORRIGENDUM 2.

10.

11.
12.
13.
14.
15.
16.

17.

-16-

A. Shterenlikht, CGPACK: a Fortran coarray library for micostructue evolution (2015).
http://sourceforge.net/projects/cgpack/.

A. Shterenlikht, “Fortran coarray library for 3D cellular automata microstructure simulatigtth in
PGAS Conf ed. M. Weiland, A. Jackson & N. Johnson, ISBN: 978-0-9926615-0-2 (2013).
http://www.pgas2013.org.uk/sites/default/files/finalpapers/Day2/R4/1_paper2.pdf.

A. Shterenlikht and L. Maetts, “Three-dimensional cellular automata modelling ofvelga propa-
gation across crystal boundaries in polycrystalline microstructuesyc. Roy Soc. A (2015).
accepted.

[. M. Smith, D.V Griffiths, and L. Magetts, Programming the finite element methddjley, 5ed
(2014). http://www.parafem.org.uk.

L. Margetts and A. Shterenlikht, “Future perspesdifor fatigue modelling on massly parallel
computer platforms” ifProc. of NAFEMS Iberia seminar: CAE based fatigue: a state of aspper
tive, 12-FEB-2015, UPM, Madri¢2015).

ISO/IEC JTC1/SC22/WG5 N2040,TS 18508 Additional &allel Featues in [rtran
(31-DEC-2014).

ISO/IEC JTC1/SC22/WG5 WD1539-1,)3/10-007r1 F2008 Working Documenittp://j3-for-
tran.org/doc/year/10/10-007r1.pdf.

M. Metcalf, J. Reid, and M. Cohellodern Fortran explained)xford, 7 Ed. (2011).

I.Chivers and J. Sleightholmétroduction to Pogramming with FortranSpringer 2 Ed. (2012).
A.Markus,Modern Fortran in practiceCambridge (2012).

R.J. Hanson and.Hopkins,Numerical Computing with Modern Fortra8JAM (2013).

N.S. Clerman and W Spectddodern Fortran: style and ugg, Cambridge (2012).

I.D. Chiers and J. Sleightholme, “Compiler support for the Fortran 2003 and 2008 standards, re
sion 15,"ACM Fortran Forum33(2), pp. 38-51 (2014).

A.Fanfarillo, T. Burnus, S. Filippone, \Cardellini, D. Nagle, and D. W. Rouson, “OpenCoarrays:
open-source transport layers supporting coarray Fortran compiler8thirPGAS conf(2014).
http://opencoarrays.org/yahoo_site_admin/assets/docs/pgasl14_submission_7.30712505.pdf.

