Fortran 2008 coarrays

Anton Shterenlikht

Mech Eng Dept, The Umérsity of Bristol, Bristol BS8 1TR
mexas@bris.ac.uk

ABSTRACT

Coarrays are adftran 2008 standard feature intended for SPMD type parallel pro-
gramming. Theuntime erironment starts a number of identicaleeutable images of
the coarray program, on multiple processors, which could be actysitahprocessors
or threads.Each image has a unique number and itgamriaddress spaceOrdinary
variables are priate to an image. Coarray variables aweilable for read/write access
from ary other image.Coarray communications are of "single sided" type, i.e. a remote
call from image A to image B does not need to be accompanied by a corresponding call
in image B. This feature makes coarray programming a lot simpler than MPI. The stan-
dard provides synchronisation intrinsics to helpidrace conditions or deadlockény
ordinary variable can be made into a coarray - scalars, arrays, intrinsicvad diztia
types, pointers, allocatables are all wial. Coarraygan be declared in, and passed to,
procedures. Coarrayae thus very flexible and can be used for a number of purposes.
For example a collection of coarrays from all or some images can be thought of gs a lar
single array This is precisely the wrerse of the model partitioning logic, typical in MPI
programs. Acoarray program carxploit functional parallelism too, by deding dis-
tinct tasks to separate images or teams of ima@esrray collecties ae expected to
become a part of the next version of the Fortran standamajor unresolved problem
of coarray programming is the lack of standard parallela&dify in Fortran. Inthis talk
several simple complete coarray programs are shown and compared to aléeepaedilel
technologies - OpenMMMPI and Fortran 2008 intrinsic "do concurrenthter image
communication patterns and data transfer are illustraethlly an example of a materi-
als microstructure simulation coarray program scaled up to 32k coresvis. sRooblems
with coarray 1/O at this scale are highlighted and addressed with the use of MPI-I/O.

1 October 2014

1. Coarray images

The runtime environment swas a number of identical copies of thee@utable, calledmages.
Hence coarray programs foddSPMD model.

runtime environment

image 1 image 2 s image n

$ cat one.f90
use iso_fortran_env, only: output_unit
inmplicit none
integer :: inmg, nings
img = this_imge()
ni ngs = num.i mages()

wite (output_unit,"(2(a,i2))") "image: ", ing, " of ", nings
end

$

$ifort -0 one.x -coarray -coarray-numimges=5 one.f90
$./one.x

imge: 1 of 5

imge: 3 of 5

imge: 4 of 5

imge: 2 of 5

imge: 5 of 5

$

All I/O units, excepti nput _uni t, are private to an imageHowever the runtime environment typi-
cally mergeut put _uni t anderror_unit streams from all images into a single stream.

i nput _uni t is preconnected only on image 1.
With Intel compiler one can set the number of images with the environment variable:

$ FOR_COARRAY_ NUM | MAGES=9
$ export FOR COARRAY_NUM | MAGES

$./one.x

imge: 1 of 9
imge: 2 of 9
imge: 9 of 9
imge: 8 of 9
imge: 6 of 9
imge: 3 of 9
imge: 7 of 9
imge: 4 of 9
imge: 5 of 9
$

These results were obtained with Intel compiler 15.0.0 20140723.
Note: as with MPI the order of output statements is unpredictable.

2. Coarray syntax and remote calls

The standard 2 3 uses the square bragtk[], to denotes a coarrayaviable. Aly image has
read/write access to all coarray variables on all images. It makes no sense to declare coarray parameters.

Examples of coarray variables:

scal ar integer coarray with a single
codi mensi on

equi val ent to the above

real allocatable array coarray

integer :: i[*]

i nteger, codinension(*) :: i
real :: r(100) [:]

| ower upper
cobound cobound

I
!

! ||

! ||

! upper | |

! bound | |

! [ower | |]

! bound | |]

! || |

complex :: ¢(7,0:13) [-3:2,5,*] ! conmplex array coarray of corank 3

I

! subscripts cosubscripts

Similar to ordinary Fortran arraysprank is the number of cosubscriptEachcosubscript runs from
its lower cobound to its upper cobound. New intrinsics are introduced return thesdues:l cobound,
ucobound, t hi s_i mage, i nage_i ndex

Remote calls are indicated by explicit reference to an imagg usileg the square brackefq,:

$ cat x.f90
integer :: ing, i[*]
img = this_i mge()
i = inyg
if (im.eqg. 1) i =i[num.imges()]
if (imy.eq. numimges()) i =i[1]
wite (*,*) ing, i
end

$ ifort -coarray x.f90
$ setenv FOR COARRAY NUM | MAGES 4
$./a.out

ADNWE
P DNWhs

$

This is a actually a race condition. Synchronisation between images is required here.

11SO/IEC 1539-1:2010Information technology - Programming languages - Fortran - Part 1: Base lan-
guage.

2ISO/IEC 1539-1:2010/Cor 1:201P;formation technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 1.

31SO/IEC 1539-1:2010/Cor 2:2018&formation technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 2.

The last upper cobound iswalys an*, meaning that it is only determined at run time. Note that
there can be subscript sets which do not map to a valid image ifde suchinvalid cosubscript sets
i mage_i ndex returns0:

$ cat z.f90
character(len=10) :: i[-3:2,5,*]
if (this_imge() .eq. num.inmages()) then
wite (*,*) "this_image()", this_imge()
wite (*,*) "this_image(i)", this_inmage(i)
wite (*,*) "lcobound(i)", |cobound(i)
wite (*,*) "ucobound(i)", ucobound(i)
wite (*,*) "image_index(ucobound(i))", image_index(i, ucobound(i))
end if
end
$ ifort -coarray z.f90
$ setenv FOR_COARRAY_NUM | MAGES 60
$./a.out
this_i mage() 60
this_inmage(i) 2 5 2
| cobound(i) -3 1
ucobound(i) 2 5 2
i mage_i ndex(ucobound(i)) 60
$ setenv FOR_COARRAY_NUM | MAGES 55
$./a.out
this_i mage() 55
this_inmage(i) -3 5 2
| cobound(i) -3
ucobound(i) 2 5 2
i mage_i ndex(ucobound(i)) 0

$

=

=
=

Coarrays must be of the same shape on all images. If arrayfeoétifshape/size are needed on dif-
ferent images, a simple solution is tavb@array components of a desil type:

$ cat pointer.f90

program z
inmplicit none
type t
integer, allocatable :: i(:)
end type
type(t) :: value[*]
integer :: ing
img = this_inmage()
al l ocate(val ue% (ing), source=ing) ! not coarray - no sync
sync al

if (img .eq. num.inmages()) value% (1) = value[1]% (1)
wite (*,*) "inmg", inmg, value%
end program z
$ifort -coarray -warn all -o pointer.x pointer.f90
$ setenv FOR_COARRAY_NUM | MAGES 3
$./pointer.x

i g 1 1
ing 2 2 2
ing 3 1 3 3

$

3. Synchronisation
All images synchronise at program initialisation and at program termination.
sync al | is a global barrier - all images wait for each other.
sync i mages is for more flexible synchronisation.

$ cat y.f90
integer :: ing, nings, i[*], tnp
I inplicit sync all
i mgy this_i mage()

ni ngs = num.i nmages()
i = inyg ' i is ready to use

if (im.eqg. 1) then

sync i nmages(nings) I explicit sync 1 with last inyg
tnp = i[ninmgs]

sync i nmages(nings) I explicit sync 2 with last inyg
i =tnp

end if

if (img .eq. ninmgs) then

sync inmages(1) I explicit sync 1 with ing 1
tmp = i[1]

sync inmages(1) I explicit sync 2 with ing 1
i =tnp

end if

wite (*,*) ing, i
I all other images wait here
end
$ ifort -coarray y.f90
$ setenv FOR_COARRAY_NUM | MAGES 5

$./a.out
3 3
1 5
2 2
4 4
5 1
$

A deadlock example:

$ cat deadl ock. f90

if (this_imge() .eq. num.imges()) sync inmages(1)
end

$ ifort -coarray deadl ock.f90

$./a.out

deadlock!

CTRL/C

Allocation and deallocation of allocatable coarraysags involvesimplicit synchronisation.

4. Implementation and performance
The standard deliberately (and wisely) says nothing on this.

A variety of underlying parallel technologies can be, and some are, used - MPI, Q[SeiNWEM,
GASNet, ARMCI, etc. As aVays, performance depends on a multitude of factors.

The Standardxpects, but does not require it, that coarrays are implemented iayahat each image
knows the address of all coarrays in memories of all images, somethintpdiknteger coarray in the
illustration belav. This is sometimes calledymmetric memory. An ordinary non-coarray variable r
might be stored at different addresses by different processes.

some image image 5
real :: r addr real :: r addr
i(:)[5]=i i(:)[5]=i

G I51= xb5a r) sr= Os
i (1)
06 De i(2)
@ xf Of
.'. P

xfOf ... B— xf3d r

Cray compiler certainly does this, other compilers likely do too.
Example: calculation ofr using the Gregory - Leibniz series:

0 (_1)n—1

nd=372, o1

Below is a @ample scaling performance with ifort on 16-core nodes with 2.6Hz SandyBridge cores.
As alays, a great manthings affect performance, coarrays are no exception.

time, s speed-up
I -
X a
i y :
I I
r X a
I]
v %
r _ 1
! x time, s—— !
r speed-up - x 3
i i
L
1 X
i
1; ______ ‘ ______ J____l_;l_k_k_l.__ LJ._I__A_‘_;;_I_J._; l
1 2 4 8 16 32 64

images

Given the series upper limit, each image sums the terms beginning with its image number and with a
stride equal to the number of images. Then image 1 sums the contributions from all ifageasd the
race condition, image 1 must neature that all images ke completed their calculations, before attempting
to read the values from them. Hence synchronisation between the images is rddeieedie usesync
al I, the global barrier.

The lkey ®gment of the code, - the loop for partial and the calculation of the totat value, is

shavn belav for the coarray code, and also for MPI, Fortran 2008 imérinsic DO CONCURRENT and

OpenMP.
Coarrays
doi =this_image(), limt, num.imges()
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
sync all ! global barrier
if (img .eq. 1) then
doi =2, nings
pi = pi + pi[i]
end do
pi =pi * 4.0_rk
end if
MPI
do i = rank+1, limt, nprocs
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do

cal | MPI_REDUCE(pi, picalc, 1, MPI_DOUBLE_PRECI SION, &
MPl_SUM 0, MPI_COVM WORLD, ierr)

picalc = picalc * 4.0 _rk

DO CONCURRENT

loops =1limt / dc_limt
doj =1, loops
shift = (j-1)*dc_limt
do concurrent (i = 1:dc_limt)
pi (i) = (-1)**(shift+i+1) / real(2*(shift+i)-1, kind=rk)
end do
pi _calc = pi_calc + sum(pi)
end do

pi _calc = pi_calc * 4.0_rk

OpenMP

I $OVP PARALLEL DO DEFAULT(NONE) PRI VATE(i) REDUCTI ON(+: pi)
doi =1, limt
pi =pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
I $OVP END PARALLEL DO

pi =pi * 4.0_rk

Coarray implementation is closest to MRUhen coarray colleates ae in the standard, the simiar

ity will be even greater.

5. Termination
In a coarray program a distinction is made betwesoriamal anderror termination.

Normal termination on one image allows other images to finish tlegk. W6TOP andEND PRO-
GRAM initiate normal termination.

New intrinsic ERROR STOP initiates error terminationThe purpose of error termination is to-ter
minateall images as soon as possible.

Example of a normal termination:

$ cat termf90
inmplicit none

integer :: i[*], iny
real :: r

img = this_i mge()

i = inyg

if (im-1.eq. 0) stop "inmg cannot continue"
do i =1, 100000000

r = atan(real (i))
end do
wite (*,*) "img", ing,
end
$ifort -coarray termf90 -0 termx
$./termx
i mg cannot continue

r-, r

i gy 2r 1. 570796

i gy 4 r 1. 570796

i gy 3r 1. 570796
$

Image 1 has encountered some error condition and cannot proceed fHidhewve, this does not
affect other images. Thecan continue doing theiravk. HenceSTOP is the best choice here.

Example of an error termination:

$ cat errtermf90
inmplicit none

integer :: i[*], iny
real :: r

img = this_imge()

i = inyg

if (im-1 .eq. 0) error stop "inmg cannot continue"
do i =1, 100000000
r = atan(real (i))
end do
wite (*,*) "img", ing,
end
$ifort -coarray errtermf90 -0 errtermx
$.Jerrtermx
i mg cannot continue
application called MPI_Abort (comm=0x84000000, 3) - process O
rank 0 in job 1 newbl ue3 53066 caused col l ective abort of all ranks
exit status of rank O: return code 3

$

r-, r

Here the error condition on image 1 ivese. Itdoes not mak ®nse for other images to continue.
ERROR STOP is the appropriate choice here.

6. Cellular automata materialslibrary

The libraryt is used to simulate theokition of polycrystalline microstructures, including grain
coarsening and grain boundary migration, and transgranul@egéeaThemain coarray variable is:

integer :: space(:,:,:,:) [:,:,:]

The model space is a "box" made from coarrays on all images. This model is made of 64 images.

Halo exchange is simple with coarray syntdhis command reads model cells from an image with
cosubscript one lower than this image, along codimension 2, into halo cells on this image:

if (imgpos(2) .ne. lcob(2)) &
space(Ibr(21):ubr(1), lbv(2), Ibr(3):ubr(3),) = &
space(Ibr(21):ubr(1), ubr(2), Ibr(3):ubr(3), :) &

[inmgpos(1), ingpos(2)-1, ingpos(3)]

This is a slice of the model space. The halo cells are highlighted.

T http://eis.bris.ac.uk/"meas/cgpack/ - Cellular GrainsABKage, freely wailable under BSD 2-clause
licence.

Modél results and performance
Grain boundaries in a random equiaxed microstructure:

A cleavage crack in a polycrystalline microstructure:

-10-

A Microstructure simulated with the space coarray allocated as
al | ocate(space(200, 200, 200) [8, 8, *], source=0, stat=errstat)

on 512 images. The last upper codimension ifn@otal there are 4 10° cells within 40,960 grainsThe
HECTOR wall time was 5m, of which most most 1/O!

: SYNC ALL —f— //@
r SYNC | MAGES serial -+ ¢ =
i SYNC | MAGES d&c - A\ - :
|
100 v
E
£
L
[N
[
|
|
10 ¢
£
'.
r
r
-
1 :—— ——-‘-—-L—l_l_l.l_l_L__I__l_.l..l.l_lJ.l___l__l_l_l_l_LLl___L_‘__L_‘_LlJ_

8 64 512 4096 32768
Number of cores, Hector XE6

-11-

7. 1/0
Lack of parallel 1/O provision in Fortran standard is, in my opinion, a major problem.

There are sral ways to output the results from the model:

. A single image acts as a single writérreads data from all images and writes it into a single file in
the correct ordeready for post-processing. This is very slow!

do coi 3 = 1cob(3), ucob(3)
do i3 = 1b(3), ub(3)
do coi2 = 1lcob(2), ucob(2)
do i2 =1b(2), ub(2)
do coil = lcob(1), ucob(1)
wite(unit=iounit, iostat=errstat) &
space(Ib(1):ub(1), i2, i3, stype) [coil, coi2, coi3]
end do
end do
end do
end do
end do

. Each image writes its own data into a separate file. This put a lot of pressure on the OS, e.g. forcing
the OS to create mariile descriptors simultaneously lot of work is then still needed to put the
data into a single file in the correct ordédternatively, readers must be designed which can read the
model from multiple files, in the right ordeEither way this is a lot of work.

. Each image writes its data into a shared file in the right place. This is not supported by Fortran, but is
supported by MPI/IO.

call MPI_Type_create_subarray(&
arrdim arraygsi ze, arraysubsize, arraystart, &
MPl _ORDER FORTRAN, MPI _I NTEGER, filetype, ierr)

call MPlI _File_set_view fh, disp, Ml _INTEGER &
filetype, '"native’, MPI_INFO NULL, ierr)

call MPI _File_ wite_ all(fh, coarray(1,1,1, stype), &
arraysubsi ze(1) *arraysubsi ze(2) *arraysubsi ze(3), &
MPI _| NTEGER, status, ierr)

On Lustre file system (Ifs, a popular parallel file system), after some optimisalidrs o6t r i pe
size andl fs stripe count,|/O rates up to 2.3 GB/s were acleg on HECToR. Thisis a speedup

of over 20 compared to using a single writer.

T This MPI/IO code was written by David Hen®&PCC, d.henty@epcc.ed.ac.uk, Copyright 2013 Theddni
sity of Edinburgh.

-12-

8. Next standard

The next Fortran standard is expected in 2015. It wilehaw marray features, detailed in the tech-
nical specification TS 18508, "AdditionahRllel Features in Fortran", WG5/N202This is the 5th draft
of this TS. It was appred in SEP-2014, subject to further corrections. The final draft is due by
NOV-2014. AskJohn Reid for the latest status.

TS 18508 includes:

. Teams - subsets of images working on independent tasks.feature helps exploit functional paral-
lelism in coarray programsProposed ne statements arefFORMTEAM CHANGE TEAM andSYNC
TEAM Proposed ne intrinsics areGET_TEAMandTEAM | D.

. Events - similar to locks? Proposedwetatements areEVENT POST andEVENT WAI T. Proposed
new intrinsic iIsEVENT _QUERY.

. Facilities to deal with failed images - thinkascale... Proposetbw statements are=Al L | MAGE.
Proposed neg intrinsics areFAI LED | MAGES, | MAGE_STATUS andSTOPPED _| MAGES.

. New aomic intrinsics, such a&sTOM C_ADD, ATOM C_ORor ATOM C_XOR.
. Collectives: CO_MAX, CO_M N, CO_SUM CO_REDUCE andCO_BROADCAST.
The language will be a lot reachbut more completo learn and use.

4ISO/IEC JTC1/SC22/WG5 N202TS 18508 Additional Parallel Featuresin Fortran (22-AUG-2014).

9. Coarray resources

-13-

The standard is the best reference. Draft versiovaitahle online for free.

A more readable, but just as thorough, resource is the® ldedk.

Sections on coarrays, with examples, can be foundsenaddurther book

At this time Fortran 2008 coarrays are fully supported only by the Cray compler Intel v15
coarray support is nearly completeve'found bugs in both Cray and Intel compilers though.

Fortran 2008 Features Absoft | Cray | g95
Compiler version number l 14 | 83.0 l |
2 Submodules N Y
3 Coarrays N Y P

(From ACM Fortran Forurt)

G95 and GCC compilers support syntaxt, bntil recently lacked the underlying inter-image commu-
nication library Howeve, a lecent announcement of the OpenCoarrays project (http://opencoaghys.or
for "developing, porting and tuning transport layers that support coaroalyalR compilers” is likely to

gfortran | HP | IBM

48

N

P, 200

15.1 15

Y N

N Y

Intel

g, 8,9, 10

NAG | Oracle
6.0 3,7,32 .
N N

N N

change this. The delopers claim that GCC5 can already be used with OpenCoarrays.

In addition there are clairtfsthat Rice Compiler (Rice Uwérsity, USA) and OpenUH (Unersity of

Houston, USA) also support coarrays.

The Fortran mailing listCOMP- FORTRAN- 90@ | SCMVAI L. AC. UK, and the Fortran Usenet we-
group,conp. | ang. f ort r an, are invaluable resources for all things Fortran, including coarrays.

SISO/IEC JTC1/SC22/WG5 WD1539-1,J3/10-007r1 F2008 Working Document.

tran.org/doc/year/10/10-007r1.pdf.

6 M. Metcalf, J. Reid, and M. Coheklodern Fortran explained, Oxford, 7 Ed. (2011).

http://j3-for-

7. Chivers and J. Sleightholméntroduction to Programming with Fortran, Springer 2 Ed. (2012).
8 A. Markus,Modern Fortran in practice, Cambridge (2012).

9R. J. Hanson and. Hopkins,Numerical Computing with Modern Fortran, SIAM (2013).

10N. S. Clerman and W Spectpdern Fortran: style and usage, Cambridge (2012).
1), D. Chiers and J. Sleightholme, “Compiler support for the Fortran 2003 and 2008 stand@idsor-

tran Forum 33(2), pp. 38-51, revision 15 (AUG-2014).
A, Fanfarillo, Coarrays in GNU

Fortran

(JUN-2014).

rays.org/yahoo_site_admin/assets/docs/Coarrays_GFortran.217135934.pdf.

http://opencoar

