
Fortran 2008 coarrays

Anton Shterenlikht

Mech Eng Dept, The University of Bristol, Bristol BS8 1TR
mexas@bris.ac.uk

ABSTRACT

Coarrays are a Fortran 2008 standard feature intended for SPMD type parallel pro-
gramming. Theruntime environment starts a number of identical executable images of
the coarray program, on multiple processors, which could be actual physical processors
or threads.Each image has a unique number and its private address space.Ordinary
variables are private to an image. Coarray variables are available for read/write access
from any other image.Coarray communications are of "single sided" type, i.e. a remote
call from image A to image B does not need to be accompanied by a corresponding call
in image B. This feature makes coarray programming a lot simpler than MPI. The stan-
dard provides synchronisation intrinsics to help avoid race conditions or deadlocks.Any
ordinary variable can be made into a coarray - scalars, arrays, intrinsic or derived data
types, pointers, allocatables are all allowed. Coarrayscan be declared in, and passed to,
procedures. Coarraysare thus very flexible and can be used for a number of purposes.
For example a collection of coarrays from all or some images can be thought of as a large
single array. This is precisely the inverse of the model partitioning logic, typical in MPI
programs. Acoarray program can exploit functional parallelism too, by delegating dis-
tinct tasks to separate images or teams of images.Coarray collectives are expected to
become a part of the next version of the Fortran standard.A major unresolved problem
of coarray programming is the lack of standard parallel I/O facility in Fortran. Inthis talk
several simple complete coarray programs are shown and compared to alternative parallel
technologies - OpenMP, MPI and Fortran 2008 intrinsic "do concurrent".Inter image
communication patterns and data transfer are illustrated.Finally an example of a materi-
als microstructure simulation coarray program scaled up to 32k cores is shown. Problems
with coarray I/O at this scale are highlighted and addressed with the use of MPI-I/O.

1 October 2014

1. Coarray images

The runtime environment spawns a number of identical copies of the executable, calledimages.
Hence coarray programs follow SPMD model.

runtime environment

image 1 image 2 image n. . .

$ cat one.f90
use iso_fortran_env, only: output_unit
implicit none
integer :: img, nimgs
img = this_image()

nimgs = num_images()
write (output_unit,"(2(a,i2))") "image: ", img, " of ", nimgs
end
$
$ ifort -o one.x -coarray -coarray-num-images=5 one.f90
$./one.x
image: 1 of 5
image: 3 of 5
image: 4 of 5
image: 2 of 5
image: 5 of 5
$

All I/O units, exceptinput_unit, are private to an image.However the runtime environment typi-
cally mergesoutput_unit anderror_unit streams from all images into a single stream.

input_unit is preconnected only on image 1.

With Intel compiler one can set the number of images with the environment variable:

$ FOR_COARRAY_NUM_IMAGES=9
$ export FOR_COARRAY_NUM_IMAGES
$./one.x
image: 1 of 9
image: 2 of 9
image: 9 of 9
image: 8 of 9
image: 6 of 9
image: 3 of 9
image: 7 of 9
image: 4 of 9
image: 5 of 9
$

These results were obtained with Intel compiler 15.0.0 20140723.

Note: as with MPI the order of output statements is unpredictable.

-2-

2. Coarray syntax and remote calls

The standard1, 2, 3 uses the square brackets [], to denotes a coarray variable. Any image has
read/write access to all coarray variables on all images. It makes no sense to declare coarray parameters.

Examples of coarray variables:

integer :: i[*] ! scalar integer coarray with a single
! codimension

integer, codimension(*) :: i ! equivalent to the above
real :: r(100) [:] ! real allocatable array coarray

! lower upper
! cobound cobound
! | |
! | |
! upper | |
! bound | |
! lower | | |
! bound | | |
! | | | |
complex :: c(7,0:13) [-3:2,5,*] ! complex array coarray of corank 3
! | | | | |
! subscripts cosubscripts

Similar to ordinary Fortran arrays,corank is the number of cosubscripts.Eachcosubscript runs from
its lower cobound to its upper cobound. New intrinsics are introduced return these values:lcobound,
ucobound, this_image, image_index

Remote calls are indicated by explicit reference to an image index using the square brackets,[]:

$ cat x.f90
integer :: img, i[*]
img = this_image()
i = img

if (img .eq. 1) i = i[num_images()]
if (img .eq. num_images()) i = i[1]
write (*,*) img, i
end
$ ifort -coarray x.f90
$ setenv FOR_COARRAY_NUM_IMAGES 4
$./a.out

1 4
3 3
2 2
4 1

$

This is a actually a race condition. Synchronisation between images is required here.

1 ISO/IEC 1539-1:2010,Information technology - Programming languages - Fortran - Part 1: Base lan-
guage.

2 ISO/IEC 1539-1:2010/Cor 1:2012,Information technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 1.

3 ISO/IEC 1539-1:2010/Cor 2:2013,Information technology - Programming languages - Fortran - Part 1:
Base language TECHNICAL CORRIGENDUM 2.

-3-

The last upper cobound is always an*, meaning that it is only determined at run time. Note that
there can be subscript sets which do not map to a valid image index. For suchinvalid cosubscript sets
image_index returns0:

$ cat z.f90
character(len=10) :: i[-3:2,5,*]
if (this_image() .eq. num_images()) then

write (*,*) "this_image()", this_image()
write (*,*) "this_image(i)", this_image(i)
write (*,*) "lcobound(i)", lcobound(i)
write (*,*) "ucobound(i)", ucobound(i)
write (*,*) "image_index(ucobound(i))", image_index(i, ucobound(i))

end if
end
$ ifort -coarray z.f90
$ setenv FOR_COARRAY_NUM_IMAGES 60
$./a.out
this_image() 60
this_image(i) 2 5 2
lcobound(i) -3 1 1
ucobound(i) 2 5 2
image_index(ucobound(i)) 60
$ setenv FOR_COARRAY_NUM_IMAGES 55
$./a.out
this_image() 55
this_image(i) -3 5 2
lcobound(i) -3 1 1
ucobound(i) 2 5 2
image_index(ucobound(i)) 0
$

Coarrays must be of the same shape on all images. If arrays of different shape/size are needed on dif-
ferent images, a simple solution is to have coarray components of a derived type:

$ cat pointer.f90
program z
implicit none
type t
integer, allocatable :: i(:)

end type
type(t) :: value[*]
integer :: img

img = this_image()
allocate(value%i(img), source=img) ! not coarray - no sync
sync all
if (img .eq. num_images()) value%i(1) = value[1]%i(1)
write (*,*) "img", img, value%i
end program z
$ ifort -coarray -warn all -o pointer.x pointer.f90
$ setenv FOR_COARRAY_NUM_IMAGES 3
$./pointer.x
img 1 1
img 2 2 2
img 3 1 3 3
$

-4-

3. Synchronisation

All images synchronise at program initialisation and at program termination.

sync all is a global barrier - all images wait for each other.

sync images is for more flexible synchronisation.

$ cat y.f90
integer :: img, nimgs, i[*], tmp

! implicit sync all
img = this_image()

nimgs = num_images()
i = img ! i is ready to use

if (img .eq. 1) then
sync images(nimgs) ! explicit sync 1 with last img
tmp = i[nimgs]
sync images(nimgs) ! explicit sync 2 with last img

i = tmp
end if

if (img .eq. nimgs) then
sync images(1) ! explicit sync 1 with img 1
tmp = i[1]
sync images(1) ! explicit sync 2 with img 1

i = tmp
end if
write (*,*) img, i

! all other images wait here
end
$ ifort -coarray y.f90
$ setenv FOR_COARRAY_NUM_IMAGES 5
$./a.out

3 3
1 5
2 2
4 4
5 1

$

A deadlock example:

$ cat deadlock.f90
if (this_image() .eq. num_images()) sync images(1)
end
$ ifort -coarray deadlock.f90
$./a.out
deadlock!
CTRL/C

Allocation and deallocation of allocatable coarrays always involvesimplicit synchronisation.

-5-

4. Implementation and performance

The standard deliberately (and wisely) says nothing on this.

A variety of underlying parallel technologies can be, and some are, used - MPI, OpenMP, SHMEM,
GASNet, ARMCI, etc. As always, performance depends on a multitude of factors.

The Standardexpects, but does not require it, that coarrays are implemented in a way that each image
knows the address of all coarrays in memories of all images, something like the integer coarrayi in the
illustration below. This is sometimes calledsymmetric memory. An ordinary, non-coarray, variabler
might be stored at different addresses by different processes.

xf3d r

real :: r

some image

i(:)[5]=i

xf0f ...
xf0e i(2)
xf0d i(1)
xf0c ...
.... ...
xb5a r

image 5

i(:)[5]=i

real :: r
addraddr

xf0c ...
xf0d i(1)
xf0e i(2)
xf0f ...
.... ...

Cray compiler certainly does this, other compilers likely do too.

Example: calculation ofπ using the Gregory - Leibniz series:

π /4 = Σ∞
n=1

(−1)n−1

2n − 1

Below is a sample scaling performance with ifort on 16-core nodes with 2.6Hz SandyBridge cores.
As always, a great many things affect performance, coarrays are no exception.

1

10

1 2 4 8 16 32 64
1

10
time, s speed-up

images

time, s
speed-up

Given the series upper limit, each image sums the terms beginning with its image number and with a
stride equal to the number of images. Then image 1 sums the contributions from all images.To avoid the
race condition, image 1 must make sure that all images have completed their calculations, before attempting
to read the values from them. Hence synchronisation between the images is required.Here we usesync
all, the global barrier.

-6-

The key segment of the code, - the loop for partialπ , and the calculation of the totalπ value, is
shown below for the coarray code, and also for MPI, Fortran 2008 new intrinsicDO CONCURRENT and
OpenMP.

Coarrays

do i = this_image(), limit, num_images()
pi = pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
sync all ! global barrier
if (img .eq. 1) then
do i = 2, nimgs
pi = pi + pi[i]

end do
pi = pi * 4.0_rk

end if

MPI

do i = rank+1, limit, nprocs
pi = pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
call MPI_REDUCE(pi, picalc, 1, MPI_DOUBLE_PRECISION, &

MPI_SUM, 0, MPI_COMM_WORLD, ierr)

picalc = picalc * 4.0_rk

DO CONCURRENT

loops = limit / dc_limit
do j = 1, loops
shift = (j-1)*dc_limit
do concurrent (i = 1:dc_limit)
pi(i) = (-1)**(shift+i+1) / real(2*(shift+i)-1, kind=rk)

end do
pi_calc = pi_calc + sum(pi)

end do

pi_calc = pi_calc * 4.0_rk

OpenMP

!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i) REDUCTION(+:pi)
do i = 1, limit
pi = pi + (-1)**(i+1) / real(2*i-1, kind=rk)
end do
!$OMP END PARALLEL DO

pi = pi * 4.0_rk

Coarray implementation is closest to MPI.When coarray collectives are in the standard, the similar-
ity will be even greater.

-7-

5. Termination

In a coarray program a distinction is made between anormal anderror termination.

Normal termination on one image allows other images to finish their work. STOP andEND PRO-
GRAM initiate normal termination.

New intrinsicERROR STOP initiates error termination.The purpose of error termination is to ter-
minateall images as soon as possible.

Example of a normal termination:

$ cat term.f90
implicit none
integer :: i[*], img
real :: r
img = this_image()
i = img

if (img-1 .eq. 0) stop "img cannot continue"
do i=1,100000000
r = atan(real(i))
end do
write (*,*) "img", img, "r", r
end
$ ifort -coarray term.f90 -o term.x
$./term.x
img cannot continue
img 2 r 1.570796
img 4 r 1.570796
img 3 r 1.570796
$

Image 1 has encountered some error condition and cannot proceed further. Howev er, this does not
affect other images. They can continue doing their work. HenceSTOP is the best choice here.

Example of an error termination:

$ cat errterm.f90
implicit none
integer :: i[*], img
real :: r
img = this_image()
i = img

if (img-1 .eq. 0) error stop "img cannot continue"
do i=1,100000000
r = atan(real(i))
end do
write (*,*) "img", img, "r", r
end
$ ifort -coarray errterm.f90 -o errterm.x
$./errterm.x
img cannot continue
application called MPI_Abort(comm=0x84000000, 3) - process 0
rank 0 in job 1 newblue3_53066 caused collective abort of all ranks
exit status of rank 0: return code 3

$

Here the error condition on image 1 is severe. It does not make sense for other images to continue.
ERROR STOP is the appropriate choice here.

-8-

6. Cellular automata materials library

The library† is used to simulate the evolution of polycrystalline microstructures, including grain
coarsening and grain boundary migration, and transgranular cleavage. Themain coarray variable is:

integer :: space(:,:,:,:) [:,:,:]

The model space is a "box" made from coarrays on all images. This model is made of 64 images.

Halo exchange is simple with coarray syntax.This command reads model cells from an image with
cosubscript one lower than this image, along codimension 2, into halo cells on this image:

if (imgpos(2) .ne. lcob(2)) &
space(lbr(1):ubr(1), lbv(2), lbr(3):ubr(3), :) = &
space(lbr(1):ubr(1), ubr(2), lbr(3):ubr(3), :) &
[imgpos(1), imgpos(2)-1, imgpos(3)]

This is a slice of the model space. The halo cells are highlighted.

† http://eis.bris.ac.uk/˜mexas/cgpack/ - Cellular Grains PACKage, freely available under BSD 2-clause
licence.

-9-

Model results and performance

Grain boundaries in a random equiaxed microstructure:

A cleavage crack in a polycrystalline microstructure:

-10-

A Microstructure simulated with the space coarray allocated as

allocate(space(200, 200, 200) [8, 8, *], source=0, stat=errstat)

on 512 images. The last upper codimension is 8.In total there are 4× 109 cells within 40,960 grains.The
HECToR wall time was 5m, of which most most I/O!

The code shows linear scaling, with 1/4 efficiency, up to 32k cores (images).

1

10

100

1000

8 64 512 4096 32768

speed-up

Number of cores, Hector XE6

SYNC ALL
SYNC IMAGES serial
SYNC IMAGES d&c

co_sum

-11-

7. I/O

Lack of parallel I/O provision in Fortran standard is, in my opinion, a major problem.

There are several ways to output the results from the model:

• A single image acts as a single writer. It reads data from all images and writes it into a single file in
the correct order, ready for post-processing. This is very slow!

do coi3 = lcob(3), ucob(3)
do i3 = lb(3), ub(3)
do coi2 = lcob(2), ucob(2)
do i2 = lb(2), ub(2)
do coi1 = lcob(1), ucob(1)
write(unit=iounit, iostat=errstat) &
space(lb(1):ub(1), i2, i3, stype) [coi1, coi2, coi3]

end do
end do
end do
end do
end do

• Each image writes its own data into a separate file. This put a lot of pressure on the OS, e.g. forcing
the OS to create many file descriptors simultaneously. A lot of work is then still needed to put the
data into a single file in the correct order. Alternatively, readers must be designed which can read the
model from multiple files, in the right order. Either way, this is a lot of work.

• Each image writes its data into a shared file in the right place. This is not supported by Fortran, but is
supported by MPI/IO†.

call MPI_Type_create_subarray(&
arrdim, arraygsize, arraysubsize, arraystart, &
MPI_ORDER_FORTRAN, MPI_INTEGER, filetype, ierr)

call MPI_File_set_view(fh, disp, MPI_INTEGER, &
filetype, ’native’, MPI_INFO_NULL, ierr)

call MPI_File_write_all(fh, coarray(1,1,1, stype), &
arraysubsize(1)*arraysubsize(2)*arraysubsize(3), &
MPI_INTEGER, status, ierr)

On Lustre file system (lfs, a popular parallel file system), after some optimisation oflfs stripe
size andlfs stripe count, I/O rates up to 2.3 GB/s were achieved on HECToR. Thisis a speedup
of over 20 compared to using a single writer.

† This MPI/IO code was written by David Henty, EPCC, d.henty@epcc.ed.ac.uk, Copyright 2013 The Univer-
sity of Edinburgh.

-12-

8. Next standard

The next Fortran standard is expected in 2015. It will have new coarray features, detailed in the tech-
nical specification TS 18508, "Additional Parallel Features in Fortran", WG5/N2027.4 This is the 5th draft
of this TS. It was approved in SEP-2014, subject to further corrections. The final draft is due by
NOV-2014. AskJohn Reid for the latest status.

TS 18508 includes:

• Teams - subsets of images working on independent tasks.This feature helps exploit functional paral-
lelism in coarray programs.Proposed new statements are:FORM TEAM, CHANGE TEAM andSYNC
TEAM. Proposed new intrinsics are:GET_TEAM andTEAM_ID.

• Events - similar to locks? Proposed new statements are:EVENT POST andEVENT WAIT. Proposed
new intrinsic isEVENT_QUERY.

• Facilities to deal with failed images - think exascale... Proposednew statements are:FAIL IMAGE.
Proposed new intrinsics are:FAILED_IMAGES, IMAGE_STATUS andSTOPPED_IMAGES.

• New atomic intrinsics, such as:ATOMIC_ADD, ATOMIC_OR or ATOMIC_XOR.

• Collectives:CO_MAX, CO_MIN, CO_SUM, CO_REDUCE andCO_BROADCAST.

The language will be a lot reacher, but more complex to learn and use.

4 ISO/IEC JTC1/SC22/WG5 N2027,TS 18508 Additional Parallel Features in Fortran (22-AUG-2014).

-13-

9. Coarray resources

The standard is the best reference. Draft version is available online5 for free.

A more readable, but just as thorough, resource is the MFE6 book.

Sections on coarrays, with examples, can be found in several further books.7, 8, 9, 10

At this time Fortran 2008 coarrays are fully supported only by the Cray compiler. The Intel v.15
coarray support is nearly complete. I’ve found bugs in both Cray and Intel compilers though.

(From ACM Fortran Forum11)

G95 and GCC compilers support syntax, but until recently lacked the underlying inter-image commu-
nication library. Howev er, a recent announcement of the OpenCoarrays project (http://opencoarrays.org)
for "developing, porting and tuning transport layers that support coarray Fortran compilers" is likely to
change this. The developers claim that GCC5 can already be used with OpenCoarrays.

In addition there are claims12 that Rice Compiler (Rice University, USA) and OpenUH (University of
Houston, USA) also support coarrays.

The Fortran mailing list,COMP-FORTRAN-90@JISCMAIL.AC.UK, and the Fortran Usenet news-
group,comp.lang.fortran, are invaluable resources for all things Fortran, including coarrays.

5 ISO/IEC JTC1/SC22/WG5 WD1539-1,J3/10-007r1 F2008 Working Document. http://j3-for-
tran.org/doc/year/10/10-007r1.pdf.

6 M. Metcalf, J. Reid, and M. Cohen,Modern Fortran explained, Oxford, 7 Ed. (2011).
7 I. Chivers and J. Sleightholme,Introduction to Programming with Fortran, Springer, 2 Ed. (2012).
8 A. Markus,Modern Fortran in practice, Cambridge (2012).
9 R. J. Hanson and T. Hopkins,Numerical Computing with Modern Fortran, SIAM (2013).
10 N. S. Clerman and W Spector,Modern Fortran: style and usage, Cambridge (2012).
11 I. D. Chivers and J. Sleightholme, “Compiler support for the Fortran 2003 and 2008 standards,” ACM For-

tran Forum 33(2), pp. 38-51, revision 15 (AUG-2014).
12 A. Fanfarillo, Coarrays in GNU Fortran (JUN-2014). http://opencoar-

rays.org/yahoo_site_admin/assets/docs/Coarrays_GFortran.217135934.pdf.

