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ABSTRACT

A cellular automata model of nano-grain instability is proposed. The model includes 3 steps:
nucleation, solidification and competition. The competition stage implements a modified Gibbs-
Thompson criterion to determine the direction and the magnitude of the grain boundary migration.
The model predicts grain coarsening and abnormal grain growth. The model is freely available from
http://seis.bris.ac.uk/∼mexas/cgpack/.

1 INTRODUCTION

Nano-crystalline materials offer a promise of increased strength. However, it has been observed that
some heat treatments lead to instabilities which result in abnormal grain growth [1], with few grains
reaching 100 times the average size. This dramatically reduces strength. This work is aimed at predict-
ing the emergence of abnormal grains and their effect on properties of the bulk material.

Size scale is the key factor when modelling mechanical behaviour of materials. A range of models exist
from 10−10m molecular dynamics (MD simulations [2]) to 10−6m crystal plasticity FE (CPFEM) [3].
MD is conceptually simple, but vast computer resources are needed to analyse even a cubic nanometre
of a solid. On the other hand CPFEM usually involves tens of material parameters, which are hard to
obtain experimentally.

One material modelling technique growing in popularity is cellular automata (CA) [4]. CA is a discrete
space - discrete time approach. The strengths of the CA method are simplicity and scale independence.
In this work a CA method is developed for the evolution of nano-grain microstructures and show how
it can be applied to predicting abnormal grain growth.

2 CELL STATES, NEIGHBOURHOOD AND SOLIDIFICATION

The 3D model space, with self-similar boundaries, is partitioned into identical cubic cells with a square
grid. A cell’s state can be either 0 for the liquid phase or a positive integer denoting a particular grain.

http://seis.bris.ac.uk/~mexas/cgpack/
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Figure 1: 2D sections of the 3D CA model, showing (a) a cell with its 8 nearest neighbours in a 2D
slice (the other 18 neighbours are in the adjacent planes above and below the plane of drawing, and
therefore not visible). The arrow indicates change of state of the central cell based on the state of a
randomly chosen neighbouring cell. In this example the central cell had state 0, the liquid phase, and
will have state 1 on next time increment, i.e. it will belong to grain 1. (b) A solidification flowchart.
(c) A fragment of CA array at time tj with 2 grains (1 and 24) and liquid phase (0). The arrows show
change of state of the liquid cells. Note that each liquid cell will change state exactly once within one
time increment, however the majority of changes are from liquid to liquid, i.e. having no effect. Only
6 liquid cells ‘solidified’, that is they became attached to solid grains in this fragment. (d) The state of
the same fragment at tj+1. Note the irregular grain boundary.

A grain is a collection of cells with the same state. For each cell a neighbourhood is defined consisting
of 26 nearest neighbours (3 × 3 × 3 cube minus the central cell), shown in Fig. 1a. The state of each
cell in the next time increment is a function of the state of the neighbourhood cells at the current time
increment.

At the onset of the simulation a CA array with P cells is created. Initially all cells have state 0. Then
the array is populated with N grain nuclei, N � P . Each grain nucleus is a single cell. Crystals with
a cubic unit cell are assumed (i.e. BCC or FCC), and tie the grain coordinate system of each grain,
Xi, i = 1, 2, 3, to its crystallographic directions: X1 is [100], X2 is [010], X3 is [001]. Each grain is
assigned a random orientation tensor, R, such that xi = RijXj .

Each time iteration, all cells are scanned in turn, and if a liquid cell (state 0) is encountered, it is given a
state of one randomly chosen neighbouring cell. This is shown schematically in Fig. 1b. The probability
of a cell turning into any of its 26 neighbours is 1/26, i.e. any growth direction is equally likely. Fig.
1c-d shows a fragment of the CA array during a single solidification step.

Each grain expands outwards as a roughly spherical volume. The roughness of the resulting boundary
is not only due to the voxel representation of the space but also due to the random nature of the solid-
ification rule. In contrast, the geometrical polycrystalline models [3] typically assign crystallographic
orientation and type to each grain boundary. It is very hard, if at all possible, to achieve this with the
CA model.

The solidification stage is complete when there are no more liquid cells left.

Uniform random nucleation distribution results in equiaxed nano-structures, Fig. 2a. However, other
grain structures are easily obtainable, e.g. a bi-modal grain structure results from seeding nuclei with
different density in two halves of the CA array, Fig. 2b.



3 GRAIN COARSENING (COMPETITION)

Grain boundaries are regions of disrupted atomic lattice, with elevated elastic energy. Increasing grain
sizes reduces the total volume of boundaries, thus lowering overall elastic energy. Therefore it is ener-
getically preferable to change from smaller to bigger grains. This process is called grain coarsening. A
modified Gibbs-Thompson equation [5] was used to implement this in the CA model:

dr

dt
= Mγ

(
1

rN
− 1

r

)
(1)

where r is the radius of the grain in question, rN is the radius of a neighbouring grain, M is the boundary
mobility and γ is the grain boundary energy.

Given two grains a and b, the grain misorientation tensor, g, is defined as g = RaR
T
b . Then the grain

misorientation angle, θ, is [6]:

θ = arccos

(
Tr(g)− 1

2

)
(2)

By applying Eqn. (1) to all grain boundary cells grain coarsening was successfully simulated, including
abnormal grain growth, Fig. 2c.

4 SCALING AND RESOLUTION SENSITIVITY

The ratio ε = N/P, ε ∈ (0 : 1] is used as the model resolution, with ε → 0 meaning extremely high
resolution and ε → 1 meaning very coarse resolution. The major output of the model is grain size
distribution, Fig. 3b. Thus it was important to assess how much grain size distribution changes with ε.

This analysis was conducted with N = 103 grains and P from 5 × 106 to 4 × 108 cells. The grain
sizes were normalised by the mean grain size. The standard deviation is shown in Fig. 3c as a function
of ε (the grain density). The conclusion is that as long as the resolution is ε < 10−5, or more than 105

cells per grain on average, the model predictions are independent of the resolution. Using this limit, and
assuming the mean grain size of 50 nm, the cell is approximately a 1× 1× 1 nm cube. Given that atom
sizes are in the order of 0.1 nm, a CA cell therefore represents 1000 atoms on average.

(a) equiaxed (b) bi-modal (c) abnormal grain

Figure 2: Nano-structures produced (a) and (b) after the solidification step and (c) after the competition
step. Colours are for ease of visualisation only, they do not denote grain orientation.
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Figure 3: (a) Simulated grain size distribution, following a typical tailed distribution observed ex-
perimentally. Note that actual grain volumes were used, not equivalent circular diameters (ECD). The
ability of our CA model to predict irregular grains and to calculate actual volumes is a major strength.
(b) Change of standard deviation of grain size distribution with the resolution (grain density). Note the
saturation behaviour, i.e. as long as ε < 10−5 the model predictions are virtually unchanged.

5 CONCLUDING REMARKS AND FUTURE WORK

It was demonstrated how a CA model can be used to predict nano-structures and their evolution, includ-
ing abnormal grain growth, using a simple Gibbs type relationship. One useful application of the CA
nano-grain model is simulation of fracture in nano-grain structures, e.g. using the CAFE multi-scale
approach [7]. This is another direction for further study. Finally, parallelisation of the three nested cell
update loops with OpenMP will be attempted. In future parallelisation with with MPI, or using for-
tran2008 co-array feature will be explored, to simulate models with more grains at high resolution.
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